
Вопрос задан 16.01.2020 в 18:57.
Предмет Математика.
Спрашивает Маякова Валерия.
С конечной остановки одновременно выезжают по двум маршрутам автобусы 1 возвращается каждые 45
минут 2 каждые 60 минут через Какое наименьшее время они снова окажутся на конечной остановке вместе

Ответы на вопрос

Отвечает Иван Емцев.
Через 3 часа 4*45 = 180 первый 60*3=180 второй 180мин это 3 часа



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Problem Analysis
We are given that buses from two different routes depart simultaneously from the final stop. One bus returns every 45 minutes, while the other returns every 60 minutes. We need to determine the minimum time it takes for both buses to be back at the final stop together.Solution
To find the minimum time for both buses to be back at the final stop together, we need to find the least common multiple (LCM) of 45 and 60. The LCM is the smallest positive integer that is divisible by both 45 and 60.To find the LCM of 45 and 60, we can use the prime factorization method or the division method. Let's use the division method to find the LCM.
Division Method for Finding LCM
1. Write down the two numbers, 45 and 60. 2. Divide each number by the smallest prime number that divides both numbers evenly. In this case, the smallest prime number is 2. - 45 ÷ 2 = 22 remainder 1 - 60 ÷ 2 = 30 remainder 0 3. Write down the quotient (the result of the division) next to each number. - 45 ÷ 2 = 22 remainder 1 (quotient = 22) - 60 ÷ 2 = 30 remainder 0 (quotient = 30) 4. Repeat steps 2 and 3 until both numbers become 1. - 22 ÷ 2 = 11 remainder 0 (quotient = 11) - 30 ÷ 2 = 15 remainder 0 (quotient = 15) - 11 ÷ 11 = 1 remainder 0 (quotient = 1) - 15 ÷ 3 = 5 remainder 0 (quotient = 5) - 5 ÷ 5 = 1 remainder 0 (quotient = 1) 5. Multiply all the prime numbers and the quotients obtained in step 3. - 2 × 2 × 3 × 5 × 11 = 660Therefore, the LCM of 45 and 60 is 660. This means that the two buses will be back at the final stop together after 660 minutes.
Answer
The two buses will be back at the final stop together after 660 minutes.Verification
Let's verify this result using the given information. We know that one bus returns every 45 minutes and the other bus returns every 60 minutes. We need to check if both buses will be back at the final stop together after 660 minutes.To verify, we can divide 660 by 45 and 60 and check if the remainders are 0.
- 660 ÷ 45 = 14 remainder 0 - 660 ÷ 60 = 11 remainder 0
Since both remainders are 0, it confirms that both buses will be back at the final stop together after 660 minutes.
Conclusion
The two buses will be back at the final stop together after 660 minutes.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili