 
4x-6y=26 5x-3y=1 способ сложения, срочно
 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
            Solving the System of Equations
To solve the system of equations 4x - 6y = 26 and 5x - 3y = 1, we can use the method of addition. The goal is to eliminate one variable by adding the two equations together. Here's how we can do it:
1. Multiply the first equation by 5 and the second equation by 4 to make the coefficients of x in both equations the same: - Equation 1: 20x - 30y = 130 - Equation 2: 20x - 12y = 4
2. Subtract Equation 2 from Equation 1 to eliminate x: - (Equation 1) - (Equation 2): -18y = 126
3. Solve for y by dividing both sides of the equation by -18: - y = -7
4. Substitute the value of y back into one of the original equations to solve for x. Let's use the first equation: - 4x - 6(-7) = 26 - 4x + 42 = 26 - 4x = -16 - x = -4
Therefore, the solution to the system of equations is x = -4 and y = -7.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			