Вопрос задан 13.01.2020 в 00:40. Предмет Математика. Спрашивает Резникова Кристина.

Автобус проходит за 5 ч такое расстояние, как автомобиль за 3 ч. Найдите скорость автобуса, если

она на 26 км/ч меньше скорости автомобиля.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жанғали Еркегуль.
1 способ.
Уравнение:

5х=3(х+26)

5х=3х+78

5х-3х=78

2х=78

х=78:2

х=39 (км/ч) - скорость автобуса.

Если нужен будет 2 способ (примерами) пиши мне в лс.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a bus covers a certain distance in 5 hours, while a car covers the same distance in 3 hours. We need to find the speed of the bus, given that it is 26 km/h slower than the speed of the car.

Solution

Let's assume the speed of the car is x km/h. According to the given information, the speed of the bus is 26 km/h slower than the speed of the car, so the speed of the bus is x - 26 km/h.

We can use the formula speed = distance / time to find the speed of the bus and the car.

Let's assume the distance covered by both the bus and the car is d km.

For the car: - Speed = x km/h - Time = 3 hours - Distance = d km

For the bus: - Speed = x - 26 km/h - Time = 5 hours - Distance = d km

Using the formula speed = distance / time, we can write the following equations:

For the car: - x = d / 3 (Equation 1)

For the bus: - x - 26 = d / 5 (Equation 2)

To find the speed of the bus, we need to solve these two equations simultaneously.

Solving the Equations

Let's solve Equations 1 and 2 to find the value of x.

From Equation 1, we have x = d / 3.

Substituting this value of x into Equation 2, we get:

d / 3 - 26 = d / 5

To solve this equation, we can multiply both sides by the least common multiple (LCM) of 3 and 5, which is 15:

5 * (d / 3 - 26) = 3 * (d / 5)

Simplifying, we get:

5d / 3 - 130 = 3d / 5

Multiplying both sides by 15 to eliminate the fractions, we get:

25d - 1950 = 9d

Simplifying further, we have:

25d - 9d = 1950

16d = 1950

Dividing both sides by 16, we get:

d = 1950 / 16

Evaluating this expression, we find:

d ≈ 121.875

Now that we have the value of d, we can substitute it back into Equation 1 to find the value of x:

x = d / 3 ≈ 121.875 / 3 ≈ 40.625

Therefore, the speed of the car is approximately 40.625 km/h.

To find the speed of the bus, we subtract 26 km/h from the speed of the car:

Speed of the bus = Speed of the car - 26 ≈ 40.625 - 26 ≈ 14.625 km/h.

Therefore, the speed of the bus is approximately 14.625 km/h.

Answer

The speed of the bus is approximately 14.625 km/h, given that it is 26 km/h slower than the speed of the car.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос