
Автобус проходит за 5 ч такое расстояние, как автомобиль за 3 ч. Найдите скорость автобуса, если
она на 26 км/ч меньше скорости автомобиля.

Ответы на вопрос

Уравнение:
5х=3(х+26)
5х=3х+78
5х-3х=78
2х=78
х=78:2
х=39 (км/ч) - скорость автобуса.
Если нужен будет 2 способ (примерами) пиши мне в лс.



Problem Analysis
We are given that a bus covers a certain distance in 5 hours, while a car covers the same distance in 3 hours. We need to find the speed of the bus, given that it is 26 km/h slower than the speed of the car.Solution
Let's assume the speed of the car is x km/h. According to the given information, the speed of the bus is 26 km/h slower than the speed of the car, so the speed of the bus is x - 26 km/h.We can use the formula speed = distance / time to find the speed of the bus and the car.
Let's assume the distance covered by both the bus and the car is d km.
For the car: - Speed = x km/h - Time = 3 hours - Distance = d km
For the bus: - Speed = x - 26 km/h - Time = 5 hours - Distance = d km
Using the formula speed = distance / time, we can write the following equations:
For the car: - x = d / 3 (Equation 1)
For the bus: - x - 26 = d / 5 (Equation 2)
To find the speed of the bus, we need to solve these two equations simultaneously.
Solving the Equations
Let's solve Equations 1 and 2 to find the value of x.From Equation 1, we have x = d / 3.
Substituting this value of x into Equation 2, we get:
d / 3 - 26 = d / 5
To solve this equation, we can multiply both sides by the least common multiple (LCM) of 3 and 5, which is 15:
5 * (d / 3 - 26) = 3 * (d / 5)
Simplifying, we get:
5d / 3 - 130 = 3d / 5
Multiplying both sides by 15 to eliminate the fractions, we get:
25d - 1950 = 9d
Simplifying further, we have:
25d - 9d = 1950
16d = 1950
Dividing both sides by 16, we get:
d = 1950 / 16
Evaluating this expression, we find:
d ≈ 121.875
Now that we have the value of d, we can substitute it back into Equation 1 to find the value of x:
x = d / 3 ≈ 121.875 / 3 ≈ 40.625
Therefore, the speed of the car is approximately 40.625 km/h.
To find the speed of the bus, we subtract 26 km/h from the speed of the car:
Speed of the bus = Speed of the car - 26 ≈ 40.625 - 26 ≈ 14.625 km/h.
Therefore, the speed of the bus is approximately 14.625 km/h.
Answer
The speed of the bus is approximately 14.625 km/h, given that it is 26 km/h slower than the speed of the car.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili