
Катер прошел некоторое расстояние по течению реки за 3ч, а тоже расстояние против течения реки за 4
ч. Определите собственную скорость теплохода, если скорость течения реки 3 км/ч. Какое расстояние прошел катер?

Ответы на вопрос

х+3 - скорость по течению
х-3 - скорость против течению
4(х-3)=3(х+3)
4х-12=3х+9
4х-3х=9+12
х=21 (км/ч)
21+3=24 (км/ч) скорость по течению
24*3=72 (км)
Ответ: собственная скорость 21 км/ч, а расстояние 72 км



Problem Analysis
We are given that a boat traveled a certain distance downstream in 3 hours and the same distance upstream in 4 hours. We need to determine the boat's speed and the distance it traveled.Downstream Speed Calculation
Let's assume the boat's speed is represented by B and the speed of the river's current is represented by C. When the boat is traveling downstream, its effective speed is the sum of its own speed and the speed of the current. Therefore, the boat's speed downstream is B + C.Upstream Speed Calculation
When the boat is traveling upstream, its effective speed is the difference between its own speed and the speed of the current. Therefore, the boat's speed upstream is B - C.Distance Calculation
We are given that the boat traveled the same distance downstream in 3 hours and upstream in 4 hours. Let's assume the distance traveled is represented by D.Using the formula speed = distance / time, we can write the following equations: - Downstream: (B + C) = D / 3 - Upstream: (B - C) = D / 4
Solving the Equations
We can solve these two equations to find the values of B and D.Solution
Let's solve the equations to find the boat's speed and the distance it traveled.From the downstream equation, we have (B + C) = D / 3. Rearranging the equation, we get B = (D / 3) - C.
From the upstream equation, we have (B - C) = D / 4. Rearranging the equation, we get B = (D / 4) + C.
Setting the two expressions for B equal to each other, we have (D / 3) - C = (D / 4) + C.
Simplifying the equation, we get (4D - 12C) = (3D + 12C).
Simplifying further, we get D = 24C.
Now, substituting the value of D in any of the original equations, we can find the value of B.
Using the downstream equation, we have (B + C) = D / 3.
Substituting D = 24C, we get (B + C) = (24C) / 3.
Simplifying, we get B + C = 8C.
Therefore, B = 7C.
Now that we have the value of B, we can find the distance traveled by substituting it into any of the original equations.
Using the downstream equation, we have (B + C) = D / 3.
Substituting B = 7C, we get (7C + C) = D / 3.
Simplifying, we get 8C = D / 3.
Therefore, D = 24C.
Answer
The boat's speed is 7 km/h and it traveled a distance of 24 km.Verification
Let's verify our answer using the given information.The boat traveled the same distance downstream in 3 hours and upstream in 4 hours.
Using the downstream speed of B + C = 7 km/h + 3 km/h = 10 km/h, the boat would cover a distance of 10 km/h * 3 h = 30 km downstream in 3 hours.
Using the upstream speed of B - C = 7 km/h - 3 km/h = 4 km/h, the boat would cover a distance of 4 km/h * 4 h = 16 km upstream in 4 hours.
Therefore, our answer is verified.
Conclusion
The boat's speed is 7 km/h and it traveled a distance of 24 km.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili