Вопрос задан 09.01.2020 в 20:21. Предмет Математика. Спрашивает Глущенко Саша.

Дана правильная шестиугольная пирамида. Высота пирамиды = 35 Боковое ребро = 37 Найти: Сторону

основания Периметр основания Высоту треугольника Площадь треугольника Площадь основания Меньшую диагональ основания Площадь меньшего диагонального сечения Большая диагональ основания Площадь большого диагонального сечения Апофему Площадь боковой поверхности Площадь полной поверхности Объем пирамиды
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рудаков Данила.
Дана правильная шестиугольная пирамида.
Высота пирамиды H = 35.
Боковое ребро L
 = 37.
Находим: 
Сторону основания a = R = 
√(37² - 35²) = √(1369 - 1225) = 144 = 12.
Периметр основания P = 6a = 6*12 =72.
Высоту треугольника (высота боковой грани - апофема А):
A = 
√(L² - (a/2)²) = √(1369 - 36) =  √1333 ≈  36,51027.
Площадь треугольника (боковой грани):
 S = (1/2)a*A  = (1/2)*12*√1333 = 6√1333 кв.ед..
Площадь основания So = 3
√3a²/2 = 3√3*144/2 = 216√3 кв.ед..
Меньшую диагональ основания d1 = 2a*cos30
° = 24*(√3/2) = 12√3.
Площадь меньшего диагонального сечения - ???
Большая диагональ основания d2 = 2R = 2a = 24.
Площадь большого диагонального сечения - ???
Апофему 
A = √(L² - (a/2)²) = √(1369 - 36) =  √1333 ≈ 36,51027. 
Площадь боковой поверхности:
 Sбок = (1/2)PA = (1/2)*72*
√1333 = 36√1333 кв.ед..
Площадь полной поверхности S = So + Sбок = (
216√3 + 36√1333) кв.ед.
Объем пирамиды V = (1/3)SoH = (1/3)* 
216√3*35 =  2520√3 куб.ед.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Given Information:

- Height of the pyramid = 35 - Length of a lateral edge = 37

Solution:

To find the various measurements of the pyramid, we can use the following formulas:

Side of the Base:

The side of the base of a regular hexagonal pyramid can be calculated using the formula: side of the base = (2 * lateral edge) / (√3)

Perimeter of the Base:

The perimeter of the base of a regular hexagonal pyramid can be calculated using the formula: perimeter of the base = 6 * side of the base

Height of the Triangle:

The height of the triangle formed by the lateral edge and the apothem can be calculated using the formula: height of the triangle = √(lateral edge^2 - (side of the base / 2)^2)

Area of the Triangle:

The area of the triangle formed by the lateral edge and the apothem can be calculated using the formula: area of the triangle = (side of the base * height of the triangle) / 2

Area of the Base:

The area of the base of a regular hexagonal pyramid can be calculated using the formula: area of the base = (3 * √3 * (side of the base)^2) / 2

Smaller Diagonal of the Base:

The smaller diagonal of the base of a regular hexagonal pyramid can be calculated using the formula: smaller diagonal of the base = side of the base

Area of the Smaller Diagonal Section:

The area of the smaller diagonal section of a regular hexagonal pyramid can be calculated using the formula: area of the smaller diagonal section = (smaller diagonal of the base * height of the triangle) / 2

Larger Diagonal of the Base:

The larger diagonal of the base of a regular hexagonal pyramid can be calculated using the formula: larger diagonal of the base = 2 * side of the base

Area of the Larger Diagonal Section:

The area of the larger diagonal section of a regular hexagonal pyramid can be calculated using the formula: area of the larger diagonal section = (larger diagonal of the base * height of the triangle) / 2

Apothem:

The apothem of a regular hexagonal pyramid can be calculated using the formula: apothem = √(lateral edge^2 - (side of the base / 2)^2)

Surface Area of the Lateral Faces:

The surface area of the lateral faces of a regular hexagonal pyramid can be calculated using the formula: surface area of the lateral faces = (perimeter of the base * height of the pyramid) / 2

Surface Area of the Whole Pyramid:

The surface area of the whole pyramid can be calculated by adding the area of the base and the surface area of the lateral faces: surface area of the whole pyramid = area of the base + surface area of the lateral faces

Volume of the Pyramid:

The volume of a regular hexagonal pyramid can be calculated using the formula: volume of the pyramid = (area of the base * height of the pyramid) / 3

Now, let's calculate the values using the given information:

- Side of the Base: side of the base = (2 * 37) / (√3) = 42.6667

- Perimeter of the Base: perimeter of the base = 6 * 42.6667 = 256

- Height of the Triangle: height of the triangle = √(37^2 - (42.6667 / 2)^2) = 30.9839

- Area of the Triangle: area of the triangle = (42.6667 * 30.9839) / 2 = 663.3333

- Area of the Base: area of the base = (3 * √3 * (42.6667)^2) / 2 = 3301.9238

- Smaller Diagonal of the Base: smaller diagonal of the base = 42.6667

- Area of the Smaller Diagonal Section: area of the smaller diagonal section = (42.6667 * 30.9839) / 2 = 663.3333

- Larger Diagonal of the Base: larger diagonal of the base = 2 * 42.6667 = 85.3334

- Area of the Larger Diagonal Section: area of the larger diagonal section = (85.3334 * 30.9839) / 2 = 1326.6667

- Apothem: apothem = √(37^2 - (42.6667 / 2)^2) = 30.9839

- Surface Area of the Lateral Faces: surface area of the lateral faces = (256 * 35) / 2 = 4480

- Surface Area of the Whole Pyramid: surface area of the whole pyramid = 3301.9238 + 4480 = 7781.9238

- Volume of the Pyramid: volume of the pyramid = (3301.9238 * 35) / 3 = 38500.7692

Therefore, the measurements of the given pyramid are as follows: - Side of the Base: 42.6667 - Perimeter of the Base: 256 - Height of the Triangle: 30.9839 - Area of the Triangle: 663.3333 - Area of the Base: 3301.9238 - Smaller Diagonal of the Base: 42.6667 - Area of the Smaller Diagonal Section: 663.3333 - Larger Diagonal of the Base: 85.3334 - Area of the Larger Diagonal Section: 1326.6667 - Apothem: 30.9839 - Surface Area of the Lateral Faces: 4480 - Surface Area of the Whole Pyramid: 7781.9238 - Volume of the Pyramid: 38500.7692

Please let me know if there's anything else I can help#### Given Information: - Height of the pyramid (h) = 35 - Length of a lateral edge (l) = 37

Finding the Side Length of the Base:

To find the side length of the base of the pyramid, we can use the formula for the area of an equilateral triangle. The area of an equilateral triangle can be calculated using the formula:

Area = (sqrt(3) / 4) * s^2

where s is the side length of the equilateral triangle.

Since the base of the pyramid is a regular hexagon, we can divide it into six equilateral triangles. Therefore, the side length of the base (s) is equal to the length of the lateral edge (l).

Side length of the base (s) = 37

Finding the Perimeter of the Base:

The perimeter of the base of the pyramid can be calculated by multiplying the side length of the base (s) by the number of sides in the base, which is 6 for a regular hexagon.

Perimeter of the base = 6 * s = 6 * 37 = 222

Finding the Height of the Triangle:

The height of the triangle can be calculated using the formula:

Height = (sqrt(3) / 2) * s

where s is the side length of the equilateral triangle.

Since the side length of the equilateral triangle is equal to the length of the lateral edge (l), we can use the given value to calculate the height of the triangle.

Height of the triangle = (sqrt(3) / 2) * l = (sqrt(3) / 2) * 37

Finding the Area of the Triangle:

The area of an equilateral triangle can be calculated using the formula:

Area = (sqrt(3) / 4) * s^2

where s is the side length of the equilateral triangle.

Using the given value for the side length of the equilateral triangle, we can calculate the area of the triangle.

Area of the triangle = (sqrt(3) / 4) * l^2 = (sqrt(3) / 4) * 37^2

Finding the Area of the Base:

The area of a regular hexagon can be calculated using the formula:

Area = (3 * sqrt(3) / 2) * s^2

where s is the side length of the regular hexagon.

Using the given value for the side length of the regular hexagon, we can calculate the area of the base.

Area of the base = (3 * sqrt(3) / 2) * s^2 = (3 * sqrt(3) / 2) * 37^2

Finding the Smaller Diagonal of the Base:

The smaller diagonal of the base can be calculated using the formula:

Smaller diagonal = s * sqrt(3)

where s is the side length of the base.

Using the given value for the side length of the base, we can calculate the smaller diagonal.

Smaller diagonal of the base = s * sqrt(3) = 37 * sqrt(3)

Finding the Area of the Smaller Diagonal Section:

The area of the smaller diagonal section can be calculated using the formula for the area of a trapezoid:

Area = (1/2) * (d1 + d2) * h

where d1 and d2 are the lengths of the parallel sides of the trapezoid, and h is the height of the trapezoid.

In this case, the lengths of the parallel sides are the side length of the base (s) and the smaller diagonal of the base.

Area of the smaller diagonal section = (1/2) * (s + smaller diagonal) * h = (1/2) * (37 + 37 * sqrt(3)) * 35

Finding the Larger Diagonal of the Base:

The larger diagonal of the base can be calculated using the formula:

Larger diagonal = 2 * s

where s is the side length of the base.

Using the given value for the side length of the base, we can calculate the larger diagonal.

Larger diagonal of the base = 2 * s = 2 * 37

Finding the Area of the Larger Diagonal Section:

The area of the larger diagonal section can be calculated using the formula for the area of a trapezoid:

Area = (1/2) * (d1 + d2) * h

where d1 and d2 are the lengths of the parallel sides of the trapezoid, and h is the height of the trapezoid.

In this case, the lengths of the parallel sides are the side length of the base (s) and the larger diagonal of the base.

**Area of the larger diagonal section = (1/2

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос