Вопрос задан 27.06.2019 в 10:51. Предмет Математика. Спрашивает Харюков Антон.

В арифмитической прогрессии 120 членов, их сумма равна 120, а сумма членов с четными номерами на

360 больше суммы членов с нечетными номерами. найдите пятидесятый член этой прогрессии
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Утриванов Артем.

Каждый второй член прогрессии на d (разность прогрессии) больше предыдущего, поэтому сумма каждых четных членов (всего их в 120/2=60) на 60d больше, чем нечетных. Т. е. 60d=360, тогда d=360/60=6. Подставив все известные величины в формулу суммы n членов прогресии S=(2a₁+d(n-1))/2*n получим (2a₁+6(120-1))/2*120=(a₁+3*119)*120=120 (по условию сумма=120, и 120 сокращается). Решив уравнение полуим a₁=1-357=-356. Тогда пятидесятый член получим по формуле a(n)=a₁+d(n-1)=-356+6*49=294-356=-62

Ответ:-62.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос