 
Вопрос задан 27.06.2019 в 10:51.
Предмет Математика.
Спрашивает Харюков Антон.
В арифмитической прогрессии 120 членов, их сумма равна 120, а сумма членов с четными номерами на
360 больше суммы членов с нечетными номерами. найдите пятидесятый член этой прогрессии 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Утриванов Артем.
                
    Каждый второй член прогрессии на d (разность прогрессии) больше предыдущего, поэтому сумма каждых четных членов (всего их в 120/2=60) на 60d больше, чем нечетных. Т. е. 60d=360, тогда d=360/60=6. Подставив все известные величины в формулу суммы n членов прогресии S=(2a₁+d(n-1))/2*n получим (2a₁+6(120-1))/2*120=(a₁+3*119)*120=120 (по условию сумма=120, и 120 сокращается). Решив уравнение полуим a₁=1-357=-356. Тогда пятидесятый член получим по формуле a(n)=a₁+d(n-1)=-356+6*49=294-356=-62
Ответ:-62.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			