
Вопрос задан 10.06.2019 в 11:20.
Предмет Математика.
Спрашивает Полежаева Виталина.
В треугольнике MNK стороны MN = 12 см, MK = 10 см, MD – биссектриса, а отрезок KD = 5 см. Найдите
DN.

Ответы на вопрос

Отвечает Клименко Виктория.
Сначала нужно составить правильный чертеж. без него трудно понять эту задачу*
так как в треугольнике МDK гипотенуза в 2 раза больше катета, можно сделать вывод, что угол DMK равен 30 градусам(теорема: напротив угла в 30 градусов лежит катет, в два раза меньше гипотенузы)
т. к. МД - биссектриса, то угол NMD= углу DMK.следовательно - угол М=60°.
т. к. угол NMD=30° следовательно гипотенуза МN в 2 раза длиннее катета ND. И катет равен 12/2=6см
DN=6см
так как в треугольнике МDK гипотенуза в 2 раза больше катета, можно сделать вывод, что угол DMK равен 30 градусам(теорема: напротив угла в 30 градусов лежит катет, в два раза меньше гипотенузы)
т. к. МД - биссектриса, то угол NMD= углу DMK.следовательно - угол М=60°.
т. к. угол NMD=30° следовательно гипотенуза МN в 2 раза длиннее катета ND. И катет равен 12/2=6см
DN=6см


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili