Вопрос задан 16.05.2019 в 19:29. Предмет Математика. Спрашивает Кокорев Денис.

В правильный шестиугольник со стороной 10 см вписана окружность. Найдите: а) радиус вписанной

окружности. б) сторону квадрата, вписанного в эту окружность. Важно подробно описать решение, а не просто дать ответ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маркопольський Макс.
Правильный шестиугольник состоит из шести правильных треугольников.
Высота одного из этих треугольников будет являться радиусом вписанной окружности.
Рассмотрим любой из треугольников: (обозначим его ABC)
Все стороны в треугольнике по 10 см. (сторона шестиугольника является основанием треугольника ,а он равносторонний).
Проведем высоту BH (высота проведенная к любой стороне в равностороннем треугольнике является биссектрисой и медианой).
AH=HC = 5 см.
По теореме Пифагора найдем высоту:
BH=√(BC²-HC²)
BH=√75 = 5√3 - радиус вписанной окружности.

б) Диаметр окружности - диагональ квадрата.
d=a√2 ,где a - сторона квадрата ,d - диагональ.
a=10√3/√2
a=√2*√150 / √2
a=√150 = 5√6 


0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос