Вопрос задан 15.05.2019 в 08:17. Предмет Математика. Спрашивает Казакова Виктория.

Может ли при делении четырёхзначного числа на двузначное получится однозначное неполное частное? А

четырёхзначное неполное частное?Почему?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тимуш Лена.
Пусть a - четырехзначное делимое, b - двузначный делитель, k - неполное частное, r - остаток.
a=b*k+r.
Рассмотрим правую часть. r<b по определению остатка,  значит,
bk+r < b*(k+1) <= 10b, так как k не превосходит 9. 10b имеет ровно на один знак больше, чем b, откуда 10b<=10*99<1000<=a. Записываем всю цепочку равенств отдельно и приходим к выводу, что a<a. Значит, такая ситуация невозможна.

Во втором случае решение очень похоже: a=b*k+r>1000*10+0>9999>=a (подставляем минимальные возможные значения) --> это тоже невозможно.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос