
1) I4X-3I<52) I3X-5I=5-3Х


Ответы на вопрос




1) i4x-3i<5 To solve this inequality, we need to eliminate the imaginary number. We can do this by multiplying both sides of the inequality by the conjugate of -3i, which is 3i:
i4x - 3i < 5 (4x - 3i)(3i) < 5(3i) -9ix + 12x < 15i
Now we can separate the real and imaginary parts:
-9ix + 12x < 15i (12x) < (15i + 9ix)
Since we're only considering real solutions, we can ignore the imaginary part:
12x < 15i + 9ix
This is the final inequality for the given expression.
2) i3x - 5i = 5 - 3x Let's solve this equation step by step:
i3x - 5i = 5 - 3x
To eliminate the imaginary number, we can multiply both sides of the equation by the conjugate of -5i, which is 5i:
(i3x - 5i)(5i) = (5 - 3x)(5i) -15ix^2 + 25i^2 = 25i - 15xi
Since i^2 is equal to -1, we can replace it in the equation:
-15ix^2 + 25(-1) = 25i - 15xi -15ix^2 - 25 = 25i - 15xi
Let's separate the real and imaginary parts again:
-15ix^2 - 25 = 25i - 15xi -15ix^2 + 15xi = 25i + 25
Now we can factor out an i:
i(-15x^2 + 15x) = 25(i + 1)
If we divide both sides of the equation by (i + 1):
-15x^2 + 15x = 25
Now we can solve for x by moving all terms to one side and factorizing if possible:
-15x^2 + 15x - 25 = 0
This is a quadratic equation, so we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac))/(2a)
In this case, a = -15, b = 15, and c = -25.
x = (-15 ± √(15^2 - 4(-15)(-25)))/(2(-15)) x = (-15 ± √(225 - 1500))/(-30) x = (-15 ± √(-1275))/(-30) x = (-15 ± √(1275)i)/(-30)
So the solutions for this equation are x = (-15 + √(1275)i)/(-30) and x = (-15 - √(1275)i)/(-30).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili