
Решите решение системы способом сложения:1)7х + 2у = 9,5х + 2у =11; слева фигурная скобка3)х + 7у =
19,х + 5у = 13; слева фигурная скобкаРешите систему уравнений:1) 3х + 5у = 16,2х + 3у =9; слева фигурная скобка3) 3х - 5у = 23,2х + 3у = 9;слева фигурная скобкаПомогите пожалуйста срочно надо! очень сильно прошу!!))))Последние пункты!!(( прошу помогите очень надо!!)

Ответы на вопрос

1)7х + 2у = 9|*(-1)
5х + 2у =11
-7x-2y=-9
5x+2y=11
-2x=2
5x+2y=11
x=-1
5*(-1)+2y=11
x=-1
y=8
2)х + 7у = 19|*(-1)
х + 5у = 13
-x-7y=-19
x+5y=13
-2y=-6
x+5y=13
y=3
x+5*3=13
y=3
x=-2
3) 3х + 5у = 16|*(-2)
2х + 3у =9|*(3)
-6x-10y=-32
6x+9y=27
-y=-5
2x+3y=9
y=5
2x+3*5=9
y=5
x=-3
4) 3х - 5у = 23|*(-2)
2х + 3у = 9|*(3)
-6x+10y=-46
6x+9y=27
19y=-19
2x+3y=9
y=-1
2x+3*(-1)=9
y=-1
x=6



Solution to the System of Equations:
To solve the system of equations, we will use the method of addition. Let's solve each system step by step.1) System of Equations: - Equation 1: 7x + 2y = 9.5 - Equation 2: 9x + 2y = 11
To solve this system, we will eliminate one variable by adding the two equations together. By adding Equation 1 and Equation 2, we can eliminate the variable 'y'.
Adding the two equations, we get: (7x + 2y) + (9x + 2y) = 9.5 + 11 16x + 4y = 20.5
Now, let's solve the resulting equation for 'x': 16x + 4y = 20.5 Divide both sides of the equation by 4: 4x + y = 5.125
Now, let's solve the resulting equation for 'y': 4x + y = 5.125 Subtract 4x from both sides of the equation: y = 5.125 - 4x
Therefore, the solution to the system of equations is: x = any real number y = 5.125 - 4x
2) System of Equations: - Equation 1: 3x + 5y = 16 - Equation 2: 2x + 3y = 9
To solve this system, we will eliminate one variable by adding the two equations together. By adding Equation 1 and Equation 2, we can eliminate the variable 'x'.
Adding the two equations, we get: (3x + 5y) + (2x + 3y) = 16 + 9 5x + 8y = 25
Now, let's solve the resulting equation for 'x': 5x + 8y = 25 Divide both sides of the equation by 5: x + (8/5)y = 5
Now, let's solve the resulting equation for 'y': x + (8/5)y = 5 Subtract x from both sides of the equation: (8/5)y = 5 - x
Therefore, the solution to the system of equations is: x = any real number y = (5 - x) * (5/8)
3) System of Equations: - Equation 1: 3x - 5y = 23 - Equation 2: 2x + 3y = 9
To solve this system, we will eliminate one variable by adding the two equations together. By adding Equation 1 and Equation 2, we can eliminate the variable 'y'.
Adding the two equations, we get: (3x - 5y) + (2x + 3y) = 23 + 9 5x - 2y = 32
Now, let's solve the resulting equation for 'x': 5x - 2y = 32 Divide both sides of the equation by 5: x - (2/5)y = 6.4
Now, let's solve the resulting equation for 'y': x - (2/5)y = 6.4 Multiply both sides of the equation by 5: 5x - 2y = 32
Therefore, the solution to the system of equations is: x = any real number y = any real number
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili