Вопрос задан 09.05.2019 в 05:46. Предмет Математика. Спрашивает Ярченко Виктор.

На первом этапе чемпионата по хоккею команда «Снежный Барс» про-водит серию матчей с каждой из

команд «Белый тигр», «Рысь», «Пума», «Буран». Право проведения первого матча на домашнем поле определяется жребием. Найдите вероятность того, что команда «Снежный Барс» будет проводить первый матч на домашнем поле не менее, чем в трёх сериях матчей.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сотикова Вероника.
Вероятность 25% потому что 3 из 4 это 75% а у другой 25%,вероятность это 25% потому что 50%-25%=25%
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Probability of "Snezhny Bars" playing the first match at home in at least three series of matches

To find the probability of the team "Snezhny Bars" playing the first match at home in at least three series of matches, we need to consider the total number of possible outcomes and the favorable outcomes.

Given that "Snezhny Bars" plays a series of matches with each of the teams "Belyi Tigр" (White Tiger), "Rys" (Lynx), "Puma," and "Buran," the total number of possible outcomes is the total number of ways the matches can be arranged.

Since the order of the matches matters, we can use the concept of permutations to calculate the total number of possible outcomes. The formula for permutations is:

nPr = n! / (n - r)!

Where n is the total number of items and r is the number of items taken at a time.

In this case, we have 4 teams, so n = 4. We want to find the number of ways the matches can be arranged in at least three series, so r = 3.

Calculating the total number of possible outcomes:

Total number of possible outcomes = 4P3 = 4! / (4 - 3)! = 4! / 1! = 4 x 3 x 2 x 1 = 24

Now, let's consider the favorable outcomes, which are the outcomes where "Snezhny Bars" plays the first match at home in at least three series.

To calculate the number of favorable outcomes, we need to consider the different scenarios where "Snezhny Bars" plays the first match at home in three or more series.

Scenario 1: "Snezhny Bars" plays the first match at home in all four series. In this scenario, "Snezhny Bars" plays the first match at home in all four series. The other three teams can be arranged in any order. So, the number of favorable outcomes for this scenario is 3! (the number of ways to arrange the other three teams).

Scenario 2: "Snezhny Bars" plays the first match at home in three out of four series. In this scenario, "Snezhny Bars" plays the first match at home in three series, and the other team plays the first match at home in one series. The team that plays the first match at home can be any of the three remaining teams. So, the number of favorable outcomes for this scenario is 3 (the number of ways to choose the team) multiplied by 3! (the number of ways to arrange the other three teams).

Calculating the number of favorable outcomes:

Number of favorable outcomes = (Number of favorable outcomes for Scenario 1) + (Number of favorable outcomes for Scenario 2)

Number of favorable outcomes = 3! + (3 x 3!) = 6 + 18 = 24

Finally, we can calculate the probability of "Snezhny Bars" playing the first match at home in at least three series by dividing the number of favorable outcomes by the total number of possible outcomes:

Probability = Number of favorable outcomes / Total number of possible outcomes

Probability = 24 / 24 = 1

Therefore, the probability of "Snezhny Bars" playing the first match at home in at least three series of matches is 1 or 100%.

Please note that the provided search results did not contain specific information related to the probability calculation for this scenario. The calculation is based on the principles of permutations and combinations.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос