
Из А в В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь.
Второй проехал первую половину пути со скоростью 60 км/ч , а вторую половину пути — со скоростью, на 18 км/ч большей скорости первого, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.

Ответы на вопрос

х - скорость первого автомобиля (постоянная)
х = 0,5 * 60 + 0,5 * (х + 18)
х = 30 + 0,5х + 9
х - 0,5х = 30 + 9
0,5х = 39
х = 39 : 0,5
х = 78 (км/ч) - скорость первого автомобиля
Проверка: 0,5 * 60 + 0,5 * (78 + 18) = 30 + 48 = 78 (км/ч) - средняя скорость второго
78 = 78 - верно.



Problem Analysis
We are given that two cars, A and B, simultaneously start from point A and travel to point B. The first car travels the entire distance at a constant speed, while the second car travels the first half of the distance at a speed of 60 km/h and the second half at a speed 18 km/h faster than the first car. We need to find the speed of the first car.Solution
Let's assume the distance between points A and B is d km.The time taken by the first car to travel from A to B is given by: Time taken by first car = Distance / Speed of first car = d / Speed of first car (Equation 1)
The time taken by the second car to travel the first half of the distance is given by: Time taken by second car for first half = Distance / Speed of second car for first half = d/2 / 60 km/h = d/120 hours (Equation 2)
The time taken by the second car to travel the second half of the distance is given by: Time taken by second car for second half = Distance / Speed of second car for second half = d/2 / (Speed of first car + 18 km/h) (Equation 3)
Since the second car arrives at point B at the same time as the first car, the total time taken by the second car is equal to the time taken by the first car: Time taken by second car = Time taken by first car (Equation 4)
Substituting the values from equations 1, 2, and 3 into equation 4, we get: d/120 + d/2 / (Speed of first car + 18 km/h) = d / Speed of first car (Equation 5)
Simplifying equation 5, we get: d/120 + d/2 / (Speed of first car + 18 km/h) - d / Speed of first car = 0
To solve this equation, we can multiply through by the least common multiple of the denominators, which is 120 * (Speed of first car + 18 km/h) * Speed of first car: d * (Speed of first car + 18 km/h) + 60d - 120d = 0
Simplifying further, we get: d * (Speed of first car + 18 km/h) - 60d = 0
Factoring out d, we get: d * (Speed of first car + 18 km/h - 60) = 0
Since d cannot be zero, we can solve for Speed of first car + 18 km/h - 60 = 0: Speed of first car + 18 km/h - 60 = 0
Simplifying, we get: Speed of first car + 18 km/h = 60
Finally, solving for Speed of first car, we subtract 18 km/h from both sides: Speed of first car = 60 km/h - 18 km/h = 42 km/h
Therefore, the speed of the first car is 42 km/h.
Answer
The speed of the first car is 42 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili