
Найдите сумму всех натуральных чисел кратных 9 и не превосходящих 80


Ответы на вопрос




Для нахождения суммы всех натуральных чисел, кратных 9 и не превосходящих 80, мы можем воспользоваться формулой для суммы арифметической прогрессии.
Арифметическая прогрессия задается формулой \(S_n = \frac{n}{2} \cdot (a_1 + a_n)\), где \(S_n\) - сумма первых \(n\) членов прогрессии, \(a_1\) - первый член прогрессии, \(a_n\) - последний член прогрессии.
В данном случае \(a_1\) равно 9 (первое число, кратное 9), \(a_n\) равно 81 (последнее число, кратное 9 и не превосходящее 80), а разность арифметической прогрессии \(d\) равна 9 (так как числа кратны 9). Также, мы можем найти количество членов прогрессии \(n\) как \(\frac{a_n - a_1}{d} + 1\).
Теперь, подставим значения в формулу:
\[ S = \frac{n}{2} \cdot (a_1 + a_n) = \frac{\frac{a_n - a_1}{d} + 1}{2} \cdot (a_1 + a_n) \]
Давайте вычислим это:
\[ S = \frac{\frac{81 - 9}{9} + 1}{2} \cdot (9 + 81) = \frac{8 + 1}{2} \cdot 90 = \frac{9}{2} \cdot 90 = 45 \cdot 9 = 405 \]
Таким образом, сумма всех натуральных чисел, кратных 9 и не превосходящих 80, равна 405.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili