
Два велосипедиста одновременно отправились в 220 километровый пробег. Первый ехал со скоростью на
1км/ч больше й, чем скорость второго,и прибыл к финишу на 2 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.

Ответы на вопрос

Скорость 1-ого = (х + 1) км/ч
Время 2-ого = (220 /х) час
Время 1-ого = 220/ (х + 1) час
Уравнение:
220 /х - 220/(х + 1) = 2
220*(х + 1) - 220х = 2х (х + 1)
220х + 220 - 220х = 2х^2 + 2x-
2x^2 + 2x - 220 = 0
x^2 + x - 110 = 0
D = 1 - 4*(-110) = 1 + 440 = 441; √D = 21
x1 = (- 1 + 21)/ 2 = 20/2 = 10
x2 = (-1 - 21)/2 = - 11 (не подходит по условию)
Ответ: 10 км/час - скорость 2-ого велосипедиста, пришедшего к финишу
вторым.



Problem Analysis
We are given that two cyclists simultaneously started a 220-kilometer race. The first cyclist traveled at a speed that was 1 km/h faster than the second cyclist. The first cyclist arrived at the finish line 2 hours earlier than the second cyclist. We need to find the speed of the cyclist who arrived second.Solution
Let's assume the speed of the second cyclist is x km/h. Therefore, the speed of the first cyclist is x + 1 km/h.We can use the formula distance = speed × time to calculate the time taken by each cyclist to complete the race.
For the first cyclist: - Distance = 220 km - Speed = x + 1 km/h - Time = 220 / (x + 1) hours
For the second cyclist: - Distance = 220 km - Speed = x km/h - Time = 220 / x hours
According to the problem, the first cyclist arrived at the finish line 2 hours earlier than the second cyclist. Therefore, we can set up the following equation:
220 / (x + 1) = 220 / x + 2
To solve this equation, we can cross-multiply and simplify:
220x = 220(x + 1) + 2x(x + 1)
Simplifying further:
220x = 220x + 220 + 2x^2 + 2x
Combining like terms:
0 = 220 + 2x^2 + 2x
Rearranging the equation:
2x^2 + 2x + 220 = 0
Now we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a), where a = 2, b = 2, and c = 220.
Calculating the discriminant: b^2 - 4ac = 2^2 - 4(2)(220) = 4 - 1760 = -1756
Since the discriminant is negative, the quadratic equation has no real solutions. This means there is no valid speed for the second cyclist that satisfies the given conditions.
Therefore, there is no solution to this problem.
Conclusion
The problem does not have a valid solution. The given conditions of the race cannot be satisfied, and there is no speed for the second cyclist that would result in the first cyclist arriving 2 hours earlier at the finish line.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili