Диагональ осевого сечения цилиндра равна 8см и составляет с образующей угол 60градусов. найти
площадь полной поверхности цилиндраОтветы на вопрос
D = L*cos 60 = 8*0.5 = 4 см - диаметр
Высота цилиндра
H = L * sin 60 = 8*(√3/2) = 4√3
Боковая поверхность цилиндра
Sбок = π*D*H = π*4*4*√3 = 16√3*π
Площадь оснований (двух)
Sосн = 2* π*D²/4 = 2*π*4²/4 = 8*π
ОТВЕТ S=(16√3 + 8)*π - полная поверхность
Рисунок к задаче - в приложении.
Calculation of the Surface Area of a Cylinder
To find the surface area of a cylinder, we need to calculate the sum of the areas of its two circular bases and the lateral surface area.
Given: - The diagonal of the base of the cylinder is 8 cm. - The angle between the diagonal and the height of the cylinder is 60 degrees.
To calculate the surface area, we need to find the radius of the base of the cylinder. Let's denote the radius as r.
To find the radius, we can use the formula for the diagonal of a right circular cylinder:
diagonal = 2r
From this equation, we can solve for r:
r = diagonal / 2
Substituting the given value of the diagonal (8 cm) into the equation, we get:
r = 8 cm / 2 = 4 cm
Now that we have the radius, we can calculate the surface area of the cylinder.
Calculation of the Surface Area of the Bases
The surface area of a circle is given by the formula:
Area = πr^2
Since the cylinder has two bases, we need to calculate the area of each base and then sum them.
The area of one base is:
Area_base = πr^2
Substituting the value of r (4 cm) into the equation, we get:
Area_base = π(4 cm)^2
Calculating the value, we find:
Area_base = 16π cm^2
Since there are two bases, the total area of the bases is:
Total_area_bases = 2 * Area_base
Substituting the value of Area_base, we get:
Total_area_bases = 2 * 16π cm^2
Calculating the value, we find:
Total_area_bases = 32π cm^2
Calculation of the Lateral Surface Area
The lateral surface area of a cylinder is given by the formula:
Lateral_area = 2πrh
where h is the height of the cylinder.
To find the height, we can use the formula for the diagonal and the height of a right circular cylinder:
diagonal = √(r^2 + h^2)
From this equation, we can solve for h:
h = √(diagonal^2 - r^2)
Substituting the given values of the diagonal (8 cm) and the radius (4 cm) into the equation, we get:
h = √((8 cm)^2 - (4 cm)^2)
Calculating the value, we find:
h = √(64 cm^2 - 16 cm^2) = √48 cm^2 = 4√3 cm
Now that we have the height, we can calculate the lateral surface area:
Lateral_area = 2πrh
Substituting the values of r (4 cm) and h (4√3 cm) into the equation, we get:
Lateral_area = 2π(4 cm)(4√3 cm)
Calculating the value, we find:
Lateral_area = 32π√3 cm^2
Calculation of the Total Surface Area
The total surface area of the cylinder is the sum of the areas of the bases and the lateral surface area:
Total_area = Total_area_bases + Lateral_area
Substituting the values of Total_area_bases (32π cm^2) and Lateral_area (32π√3 cm^2) into the equation, we get:
Total_area = 32π cm^2 + 32π√3 cm^2
Calculating the value, we find:
Total_area = 32π(1 + √3) cm^2
Therefore, the total surface area of the cylinder is 32π(1 + √3) cm^2.
Please note that the final answer is an exact value and cannot be simplified further.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
