
Катер отошел от пристани и двинулся по течению реки. Через 1,5 ч он повернул обратно и двигался
против течения такое же время, На каком расстоянии от пристани он оказался, если скорость катера в стоячей воде 21,6км/ч, а скорость течения реки - 1,9км/ч ?

Ответы на вопрос

2) 21,6-1,9=19,7(км/ч)-скорость катера против течения реки.
3)23,6*1,5=35,4(км)- прошёл катер по течению реки.
4)19,7*1,5=29,55(км)- прошёл катер против течения реки.
5)35,4-29,55=5,85(км)
Ответ: на расстоянии 5,85 км от пристани оказался катер.)



21,6-1,9=19,7 км/ч-скорость катера против течения
23,5*1,5=35,25 км- прошел катер по течению за 1,5 часа
19,7*1,5=29,55 км-прошел катер против течения за 1,5 часа
35,25-29,55=5,7 км-осталось до пристани
ответ: 5,7 км



Problem Analysis
We are given the following information: - A boat departs from a dock and moves downstream for 1.5 hours. - The boat then turns back and moves upstream for the same amount of time. - The speed of the boat in still water is 21.6 km/h. - The speed of the river current is 1.9 km/h.We need to determine the distance from the dock where the boat ended up.
Solution
To solve this problem, we can use the formula: distance = speed x time.Let's break down the problem into two parts: the downstream journey and the upstream journey.
# Downstream Journey
During the downstream journey, the boat is moving in the same direction as the river current. This means that the effective speed of the boat is the sum of its speed in still water and the speed of the river current.Let's calculate the distance covered during the downstream journey.
Speed of the boat during the downstream journey = Speed of the boat in still water + Speed of the river current = 21.6 km/h + 1.9 km/h = 23.5 km/h.
Time taken during the downstream journey = 1.5 hours.
Distance covered during the downstream journey = Speed x Time = 23.5 km/h x 1.5 hours = 35.25 km.
# Upstream Journey
During the upstream journey, the boat is moving against the direction of the river current. This means that the effective speed of the boat is the difference between its speed in still water and the speed of the river current.Let's calculate the distance covered during the upstream journey.
Speed of the boat during the upstream journey = Speed of the boat in still water - Speed of the river current = 21.6 km/h - 1.9 km/h = 19.7 km/h.
Time taken during the upstream journey = 1.5 hours.
Distance covered during the upstream journey = Speed x Time = 19.7 km/h x 1.5 hours = 29.55 km.
# Total Distance from the Dock
To find the total distance from the dock, we need to calculate the difference between the distance covered during the downstream journey and the distance covered during the upstream journey.Total distance from the dock = Distance covered during the downstream journey - Distance covered during the upstream journey = 35.25 km - 29.55 km = 5.7 km.
Therefore, the boat ended up at a distance of 5.7 km from the dock.
Answer
The boat ended up at a distance of 5.7 km from the dock.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili