
Объем прямоугольного параллелепипеда равен 165 см в кубе. Его измерения выражаются простыми
числами. Найдите измерения данного прямоугольного параллелипипеда.

Ответы на вопрос




Finding the Dimensions of a Rectangular Parallelepiped
To find the dimensions of a rectangular parallelepiped with a volume of 165 cm³, we need to determine the lengths of its three sides. The given information states that the dimensions are expressed as simple numbers.
Let's assume the three sides of the rectangular parallelepiped are a, b, and c.
The volume of a rectangular parallelepiped is given by the formula:
Volume = length × width × height
In this case, the volume is given as 165 cm³. Therefore, we have the equation:
165 = a × b × c Since the dimensions are expressed as simple numbers, we need to find three numbers that multiply together to give 165.
To find the possible dimensions, we can factorize 165 and look for combinations of factors that give us simple numbers.
The prime factorization of 165 is:
165 = 3 × 5 × 11
From this factorization, we can see that the possible dimensions of the rectangular parallelepiped are:
- a = 3 - b = 5 - c = 11
Therefore, the dimensions of the given rectangular parallelepiped are 3 cm × 5 cm × 11 cm.
Please note that there may be other combinations of factors that multiply together to give 165, but since the question specifies that the dimensions are expressed as simple numbers, we have chosen the simplest combination.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili