
Длину сторон квадрата уменьшили на 10% на сколько процентов уменьшилась его площадь


Ответы на вопрос




Для решения этой задачи нам нужно узнать, на сколько процентов уменьшилась площадь квадрата, если его стороны уменьшились на 10%.
Решение:
Пусть исходная длина стороны квадрата равна l. Если мы уменьшаем каждую сторону на 10%, то новая длина стороны будет равна 0.9l.Площадь квадрата вычисляется как l^2, а новая площадь будет равна (0.9l)^2.
Чтобы найти процентное изменение площади, мы можем сравнить разницу между исходной и новой площадью с исходной площадью и выразить это в процентах.
Разница между исходной и новой площадью равна: (l^2 - (0.9l)^2)
Теперь мы можем выразить это в процентах, используя формулу: (l^2 - (0.9l)^2) / (l^2) * 100%
Ответ:
Площадь квадрата уменьшилась на 19%.Подтверждение: Исходная площадь квадрата равна l^2, а новая площадь равна (0.9l)^2. Вычислим процентное изменение площади для разных значений длины стороны квадрата:
- Если l = 1, то исходная площадь равна 1, а новая площадь равна 0.81. Процентное изменение площади: (1 - 0.81) / 1 * 100% = 19%. - Если l = 5, то исходная площадь равна 25, а новая площадь равна 20.25. Процентное изменение площади: (25 - 20.25) / 25 * 100% = 19%. - Если l = 10, то исходная площадь равна 100, а новая площадь равна 81. Процентное изменение площади: (100 - 81) / 100 * 100% = 19%.
Таким образом, мы видим, что процентное изменение площади составляет 19% во всех случаях, что подтверждает наш ответ.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili