
Здравствуйте помогите пожалуйста с заданием. Какие матрицы можно сложить а какие перемножить, если
их размерность 2х3, 3х2, 4х4, 3х3, 6х3 и 6х2.

Ответы на вопрос

[m Х n] на [m Х n] . Умножить можно такие: [m х n] на [n х k], то есть
число столбцов 1 матрицы = числу строк 2 матрицы.
Из указанных матриц можно умножить:
[2 х 3] на [3х2] ; [2 х 3] на [3х3] ; [3 х 3] на [3 х 2] ; [3х2] на [2 х 3] ;
[6 х3] на [3 х 2] ; [6 х 2] на [2 х 3] ; [6 х 3] на [3 х 3].



Сложение и умножение матриц
При сложении и умножении матриц необходимо учитывать их размерности. Вот какие матрицы можно сложить и умножить, исходя из заданных размерностей:
1. Размерность 2x3: - Матрицы размерности 2x3 можно сложить с матрицами такой же размерности. Результатом будет матрица такой же размерности, в которой каждый элемент будет равен сумме соответствующих элементов слагаемых матриц. - Матрицы размерности 2x3 нельзя перемножить, так как количество столбцов первой матрицы не равно количеству строк второй матрицы.
2. Размерность 3x2: - Матрицы размерности 3x2 можно сложить с матрицами такой же размерности. Результатом будет матрица такой же размерности, в которой каждый элемент будет равен сумме соответствующих элементов слагаемых матриц. - Матрицы размерности 3x2 нельзя перемножить, так как количество столбцов первой матрицы не равно количеству строк второй матрицы.
3. Размерность 4x4: - Матрицы размерности 4x4 можно сложить с матрицами такой же размерности. Результатом будет матрица такой же размерности, в которой каждый элемент будет равен сумме соответствующих элементов слагаемых матриц. - Матрицы размерности 4x4 можно перемножить с матрицами размерности 4x4. Результатом будет матрица размерности 4x4, в которой каждый элемент будет равен сумме произведений элементов соответствующих строк первой матрицы на элементы соответствующих столбцов второй матрицы.
4. Размерность 3x3: - Матрицы размерности 3x3 можно сложить с матрицами такой же размерности. Результатом будет матрица такой же размерности, в которой каждый элемент будет равен сумме соответствующих элементов слагаемых матриц. - Матрицы размерности 3x3 можно перемножить с матрицами размерности 3x3. Результатом будет матрица размерности 3x3, в которой каждый элемент будет равен сумме произведений элементов соответствующих строк первой матрицы на элементы соответствующих столбцов второй матрицы.
5. Размерность 6x3: - Матрицы размерности 6x3 можно сложить с матрицами такой же размерности. Результатом будет матрица такой же размерности, в которой каждый элемент будет равен сумме соответствующих элементов слагаемых матриц. - Матрицы размерности 6x3 нельзя перемножить, так как количество столбцов первой матрицы не равно количеству строк второй матрицы.
6. Размерность 6x2: - Матрицы размерности 6x2 можно сложить с матрицами такой же размерности. Результатом будет матрица такой же размерности, в которой каждый элемент будет равен сумме соответствующих элементов слагаемых матриц. - Матрицы размерности 6x2 нельзя перемножить, так как количество столбцов первой матрицы не равно количеству строк второй матрицы.
Итак, можно сложить матрицы одинаковой размерности и перемножить матрицы, у которых количество столбцов первой матрицы равно количеству строк второй матрицы.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili