
Две бригады,работая вместе ,выполняют работу за 6 ч.одной первой бригаде на ту же работу требуется
на 9 ч больше,чем второй .За какое время может выполнить

Ответы на вопрос

1/6-скорость работы двух бригад
х-время второй бригады
1/х--скорость работы 2й бригады
х+9-время первой бригады
1/(х+9)--скорость работы 1й бригады
1/х+1/(х+9)=1/6 умножим на 6 х(х+9)
6(х+9)+6х=х(х+9)
6х+54+6х=х²+9х
х²-3х-54=0
D = b² - 4ac = (-3)2 - 4·1·(-54) = 9 + 216 = 225
x1 = (3 - √225)/(2·1) = (3 - 15)/2 = -12/2 = -6 не подходит
x1 = (3 + √225)/(2·1) = (3+ 15)/2 = 18/2 = 9ч-время второй бригады
9+9=18ч--время 1й бригады



Problem Analysis
We are given that two brigades working together can complete a task in 6 hours. The first brigade takes 9 hours more than the second brigade to complete the same task. We need to determine how long it would take for the first brigade to complete the task alone.Solution
Let's assume that the second brigade can complete the task in x hours. According to the given information, the first brigade takes 9 hours more than the second brigade, so the first brigade would take (x + 9) hours to complete the task alone.When the two brigades work together, they can complete the task in 6 hours. This means that in 1 hour, they can complete 1/6th of the task.
To find the time it would take for the first brigade to complete the task alone, we can set up the following equation:
1/(x + 9) + 1/x = 1/6
Now, let's solve this equation to find the value of x, which represents the time it would take for the second brigade to complete the task alone.
Calculation
To solve the equation, we can multiply both sides by 6x(x + 9) to eliminate the denominators:6x + 6(x + 9) = x(x + 9)
Simplifying the equation:
6x + 6x + 54 = x^2 + 9x
Combining like terms:
12x + 54 = x^2 + 9x
Rearranging the equation:
x^2 - 3x - 54 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = -3, and c = -54.
Substituting the values into the quadratic formula:
x = (-(-3) ± √((-3)^2 - 4(1)(-54))) / (2(1))
Simplifying:
x = (3 ± √(9 + 216)) / 2
x = (3 ± √225) / 2
x = (3 ± 15) / 2
We have two possible solutions:
1. x = (3 + 15) / 2 = 18 / 2 = 9 2. x = (3 - 15) / 2 = -12 / 2 = -6
Since time cannot be negative, we discard the second solution.
Therefore, the second brigade can complete the task alone in 9 hours.
To find the time it would take for the first brigade to complete the task alone, we add 9 hours to the time taken by the second brigade:
Time taken by the first brigade = 9 + 9 = 18 hours
So, the first brigade can complete the task alone in 18 hours.
Answer
The first brigade can complete the task alone in 18 hours.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili