 
Реши пример, ОДИН+ОДИН=МНОГО, Одинаковые буквы обозначают одинаковые цифры
 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
         0
                    0
                     0
                    0
                 
            Solving the Cryptarithmetic Puzzle
To solve the cryptarithmetic puzzle "ODIN + ODIN = MNOGO," where each letter represents a unique digit, we can follow a systematic approach to find the values of the letters.
Step 1: Identifying Constraints
The puzzle "ODIN + ODIN = MNOGO" provides the following constraints: - Each letter represents a unique digit. - The sum of two identical four-digit numbers results in a five-digit number.Step 2: Identifying Possible Values
We can start by identifying the possible values for the letters based on the constraints provided.- Since the sum of two identical four-digit numbers results in a five-digit number, the value of "O" must be less than 5 to avoid carrying over to the next digit. - The value of "N" must be greater than or equal to 5 to result in a five-digit number when added to itself.
Step 3: Trial and Error
We can now proceed with trial and error to find the values that satisfy the given conditions.Let's start with the assumption that "O" equals 1 and "N" equals 5. This would result in "D" being 0, which is not allowed for a four-digit number. Therefore, "O" cannot be 1.
Next, let's assume "O" equals 2. This would result in "D" being 1, which is a valid digit for a four-digit number. We can proceed with this assumption and check if it satisfies the entire equation.
Step 4: Checking the Assumption
Using the assumption that "O" equals 2, we can calculate the values for "D," "I," and "M" to satisfy the equation "ODIN + ODIN = MNOGO."- With "O" as 2, "D" becomes 1. - Since "D" is 1, "I" cannot be 0. Therefore, "I" becomes 3. - "N" must be 5, and "M" must be 1.
Step 5: Verifying the Solution
Let's substitute the values we found into the equation and verify if it holds true: - 2131 + 2131 = 4262The solution "ODIN = 2131" and "MNOGO = 4262" satisfies the given conditions of the puzzle.
Therefore, the solution to the cryptarithmetic puzzle "ODIN + ODIN = MNOGO" is: - ODIN = 2131 - MNOGO = 4262
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			