
При каких значениях x верно x > x2


Ответы на вопрос




Understanding the Inequality x > x^2
To understand the values of x for which the inequality x > x^2 is true, we can analyze the given inequality and determine the range of values for x that satisfy it.
Analyzing the Inequality
The inequality x > x^2 can be rewritten as x - x^2 > 0. This can be further simplified to x(1 - x) > 0.
Determining the Range of Values
To find the range of values for x that satisfy the inequality x(1 - x) > 0, we can use the concept of intervals and signs of the expression x(1 - x).
- When x < 0, both x and (1 - x) are negative, so the product x(1 - x) is positive. - When 0 < x < 1, x is positive and (1 - x) is negative, so the product x(1 - x) is negative. - When x > 1, both x and (1 - x) are positive, so the product x(1 - x) is positive.
Therefore, the inequality x > x^2 is true for the range of values of x that satisfy the condition x < 0 or x > 1.
Conclusion
In conclusion, the inequality x > x^2 is true for the values of x that are less than 0 or greater than 1.
- Source: ' ' - Source: ' , '


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili