Вопрос задан 26.04.2019 в 21:53. Предмет Математика. Спрашивает Омельчук Андрей.

У кондитера был мешок конфет . Он хотел выдать шести ребятам одинаковые конфеты и не смог . Тогда

он решил выдать им разные конфеты и опять не смог . Какое наибольшее количество конфет могло быть в мешке у кондитера ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вагин Александр.
По паять конфет каждого вида максимум получится
25 наибольшее количество конфет которых могло быть в мешке
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The Problem of the Confectioner's Candy Bag

The confectioner had a bag of candies and wanted to distribute them equally among six children. However, he couldn't find a way to do so. He then decided to distribute different candies to each child, but he still couldn't find a solution. The question is: What is the maximum number of candies that could have been in the confectioner's bag?

Analysis and Solution

To find the maximum number of candies that could have been in the confectioner's bag, let's consider the problem step by step.

1. If the confectioner wanted to distribute the candies equally among six children, he would need to have a multiple of six candies in his bag. This is because dividing any number by six will result in an integer if and only if the number is a multiple of six.

2. However, when the confectioner tried to distribute the candies equally among the children, he couldn't find a solution. This means that the number of candies in his bag is not a multiple of six.

3. The confectioner then decided to distribute different candies to each child, but he still couldn't find a solution. This implies that the number of candies in his bag is not divisible by any number from one to six.

4. Therefore, the maximum number of candies that could have been in the confectioner's bag is the largest number that is not divisible by any number from one to six.

To find this number, we can use the concept of the least common multiple (LCM). The LCM of a set of numbers is the smallest number that is divisible by all the numbers in the set.

In this case, we need to find the LCM of the numbers one to six. The LCM of one, two, three, four, five, and six is 60.

Therefore, the maximum number of candies that could have been in the confectioner's bag is 60.

Conclusion

The confectioner could have had a maximum of 60 candies in his bag. This is the largest number that is not divisible by any number from one to six, allowing for an equal distribution of candies among the children to be impossible.

Please let me know if there's anything else I can help you with!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос