
Назовем “соросовским произведением” двух различных чисел, a и b, число a + b + ab. Можно ли, исходя
из чисел 1 и 4, после многократного применения этой операции к уже полученным произведениям получить: а) число 1999; б) число 2000?

Ответы на вопрос

1+4+1*4=9,
1+9+1*9=19,
4+9+4*9=49,
1+19+1*19=39,
1+49+1*49=99,
4+19+4*19=99,
4+49+4*49=249,
9+19+9*19=199,
9+49+9*49=499,
19+49+19*49=999...
Возможные варианты “соросовских произведений":
1 и оканчивающиеся на 9 число (10х+9): 1+(10х+9)+1*(10х+9)=
=10(2х+1)+9, {оканчивающееся на 9 число}
4 и оканчивающиеся на 9 число (10х+9): 4+(10х+9)+4*(10х+9)=
=10(5х+4)+9, {оканчивающееся на 9 число}
два оканчивающиеся на 9 числа (10х+9) и (10у+9): (10х+9)+(10у+9)+(10х+9)*(10у+9)=100(х+у+ху)+99. {оканчивающееся на 99 число}
“Соросовские произведения” оканчиваются цифрой 9.
Получить число 2000 путем “соросовского произведения" не возможно.
Если число 1999 является "соросовским произведением", то
1) существует такое число (10х+9), что 1+(10х+9)+1*(10х+9)=1999, или
2) существует такое число (10х+9), что 4+(10х+9)+4*(10х+9)=1999, или
3) существуют два таких числа (10х+9) и (10у+9), что (10х+9)+(10у+9)+(10х+9)*
*(10у+9)=1999.
1) 1+(10х+9)+1*(10х+9)=1999,
1+2(10х+9)=1999,
2(10х+9)=1998,
(10х+9)=999. {число 999 также является "соросовским произведением" - смотри выше}
Число 1999 можно получить путем "соросовского произведения".


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili