
Вопрос задан 11.05.2018 в 08:23.
Предмет Математика.
Спрашивает Гордеева Юля.
При каких значениях параметра a из неравенства x^2 - a(1+a^2)x+a^4 < 0 следует неравенство x^2 +
4x + 3<0? ( из одного неравенства следует второе, если множество решений первого неравенства содержится в множестве решений второго)

Ответы на вопрос

Отвечает Свистунов Александр.
Второе неравенство имеет решение:
x^2 + 4x + 3 < 0
(x + 1)(x + 3) < 0
x ∈ (-3; -1)
Решение 1 неравенства должно содержать более узкий промежуток.
x^2 - a(1 + a^2)*x + a^4 < 0
x^2 - (a + a^3)*x + a^4 < 0
D = (a+a^3)^2 - 4a^4 = a^2+2a^4+a^6-4a^4 = a^2-2a^4+a^6 = (a - a^3)^2
x1 = (a + a^3 - a + a^3)/2 = 2a^3/2 = a^3
x2 = (a + a^3 + a - a^3)/2 = 2a/2 = a
Так как промежуток должен умещаться целиком внутри (-3; -1), то ясно, что x1 < -1, x2 < -1, то есть -3 < a^3 < a < -1
Решаем неравенства:
{ a < -1
{ a^3 > -3
a ∈ (-∛3; -1)


Топ вопросов за вчера в категории Математика

Математика 12

Математика 60

Математика 771

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili