Вопрос задан 28.02.2019 в 03:54. Предмет Математика. Спрашивает Ибрагимов Тимур.

НОД(48,240,264)= Помогите

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Королев Алиман.
НОД(48, 240, 264)= 24
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Greatest Common Divisor (GCD) of 48, 240, and 264

To find the greatest common divisor (GCD) of three numbers, 48, 240, and 264, we can use the Euclidean algorithm. The Euclidean algorithm is a method for finding the GCD of two numbers, and it can be extended to find the GCD of multiple numbers.

The Euclidean algorithm states that the GCD of two numbers is equal to the GCD of the remainder when the larger number is divided by the smaller number, and the smaller number itself. We can apply this algorithm iteratively to find the GCD of multiple numbers.

Let's apply the Euclidean algorithm to find the GCD of 48, 240, and 264 step by step:

1. We start by finding the GCD of 48 and 240. We divide 240 by 48 and find that the remainder is 0. Therefore, the GCD of 48 and 240 is 48.

2. Next, we find the GCD of 48 (the result from step 1) and 264. We divide 264 by 48 and find that the remainder is 24. Therefore, the GCD of 48 and 264 is 24.

3. Finally, we find the GCD of 24 (the result from step 2) and 264. We divide 264 by 24 and find that the remainder is 0. Therefore, the GCD of 24 and 264 is 24.

Therefore, the GCD of 48, 240, and 264 is 24.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос