
Два велосипедиста отправились из одного поселка одновременно в противоположных направлениях через
30 минут расстояние между ними было 15 километров Скорость одного из них 260 метров в минуту Узнай скорость другого велосипедиста Вырази 15 километров в метрах Составь и реши задачи обратные данной

Ответы на вопрос

15*100=15000м
15000:30=500мин скор удаления
500-260=240мин скор второго



Problem Analysis
We are given that two cyclists start from the same village simultaneously, but in opposite directions. After 30 minutes, the distance between them is 15 kilometers. We are also given the speed of one of the cyclists, which is 260 meters per minute. We need to find the speed of the other cyclist.
To solve this problem, we can use the formula:
Speed = Distance / Time
We can express the distance between the two cyclists in meters and the time in minutes to match the given speed. Then, we can solve for the speed of the other cyclist.
Calculations
First, let's convert the distance of 15 kilometers to meters:
15 kilometers = 15,000 meters
Next, let's calculate the time in minutes. We are given that the two cyclists started simultaneously, but after 30 minutes, the distance between them is 15 kilometers. Therefore, the total time taken by both cyclists is 30 minutes.
Now, let's calculate the speed of the other cyclist using the formula:
Speed = Distance / Time
Let's substitute the values:
Speed = 15,000 meters / 30 minutes
Solution
Calculating the speed:
Speed = 15,000 meters / 30 minutes = 500 meters per minute
Therefore, the speed of the other cyclist is 500 meters per minute.
Reverse Problem
The reverse problem would involve finding the time it takes for the two cyclists to meet if they start from a distance of 15 kilometers and have speeds of 260 meters per minute and 500 meters per minute, respectively.
To solve this problem, we can use the formula:
Time = Distance / Relative Speed
The relative speed is the sum of the speeds of the two cyclists.
Let's substitute the values:
Time = 15,000 meters / (260 meters per minute + 500 meters per minute)
Calculating the time:
Time = 15,000 meters / 760 meters per minute
Time ≈ 19.74 minutes
Therefore, it would take approximately 19.74 minutes for the two cyclists to meet.
Note: The reverse problem assumes that the two cyclists are moving towards each other until they meet.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili