Вопрос задан 26.02.2019 в 16:59. Предмет Математика. Спрашивает Потапенко Светлана.

1/2+(1/3)

;-1/5+3/5;3/7-(1/2+1/4);-2/5+(1/10-7/15);(3/14-11/28)-1/2;-3/7+(1/14-2/21);(2/5-9/10)+1/3;(2/7-1/14)-5/21
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вильдан Кириллов.
Это будет щяс посчитаю .146
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these arithmetic expressions involving fractions, let's break down each expression step by step:

1. 1/2 + 1/3: To add fractions, we need to find a common denominator. In this case, the least common multiple (LCM) of 2 and 3 is 6. Therefore, we can rewrite the expression as (3/6) + (2/6) = 5/6.

2. -1/5 + 3/5: Since the denominators are the same, we can directly add the numerators: (-1 + 3) / 5 = 2/5.

3. 3/7 - (1/2 + 1/4): First, let's simplify the expression inside the parentheses. (1/2 + 1/4) = (2/4 + 1/4) = 3/4. Now, subtracting fractions with the same denominator, we have: 3/7 - 3/4. To subtract fractions, we need to find a common denominator. The LCM of 7 and 4 is 28. Therefore, we can rewrite the expression as (12/28) - (21/28) = -9/28.

4. -2/5 + (1/10 - 7/15): First, let's simplify the expression inside the parentheses. (1/10 - 7/15) = (3/30 - 14/30) = -11/30. Now, adding fractions with the same denominator, we have: -2/5 + (-11/30). To add fractions, we need to find a common denominator. The LCM of 5 and 30 is 30. Therefore, we can rewrite the expression as (-12/30) + (-11/30) = -23/30.

5. (3/14 - 11/28) - 1/2: First, let's simplify the expression inside the parentheses. (3/14 - 11/28) = (6/28 - 11/28) = -5/28. Now, subtracting fractions with the same denominator, we have: -5/28 - 1/2. To subtract fractions, we need to find a common denominator. The LCM of 28 and 2 is 28. Therefore, we can rewrite the expression as (-5/28) - (14/28) = -19/28.

6. -3/7 + (1/14 - 2/21): First, let's simplify the expression inside the parentheses. (1/14 - 2/21) = (3/42 - 4/42) = -1/42. Now, adding fractions with the same denominator, we have: -3/7 + (-1/42). To add fractions, we need to find a common denominator. The LCM of 7 and 42 is 42. Therefore, we can rewrite the expression as (-18/42) + (-1/42) = -19/42.

7. (2/5 - 9/10) + 1/3: First, let's simplify the expression inside the parentheses. (2/5 - 9/10) = (4/10 - 9/10) = -5/10 = -1/2. Now, adding fractions, we have: (-1/2) + (1/3). To add fractions, we need to find a common denominator. The LCM of 2 and 3 is 6. Therefore, we can rewrite the expression as (-3/6) + (2/6) = -1/6.

8. (2/7 - 1/14) - 5/21: First, let's simplify the expression inside the parentheses. (2/7 - 1/14) = (4/14 - 1/14) = 3/14. Now, subtracting fractions, we have: (3/14) - (5/21). To subtract fractions, we need to find a common denominator. The LCM of 14 and 21 is 42. Therefore, we can rewrite the expression as (9/42) - (10/42) = -1/42.

So, the solutions to the given expressions are: 1. 1/2 + 1/3 = 5/6 2. -1/5 + 3/5 = 2/5 3. 3/7 - (1/2 + 1/4) = -9/28 4. -2/5 + (1/10 - 7/15) = -23/30 5. (3/14 - 11/28) - 1/2 = -19/28 6. -3/7 + (1/14 - 2/21) = -19/42 7. (2/5 - 9/10) + 1/3 = -1/6 8. (2/7 - 1/14) - 5/21 = -1/42

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос