
1/2+(1/3)
;-1/5+3/5;3/7-(1/2+1/4);-2/5+(1/10-7/15);(3/14-11/28)-1/2;-3/7+(1/14-2/21);(2/5-9/10)+1/3;(2/7-1/14)-5/21

Ответы на вопрос




To solve these arithmetic expressions involving fractions, let's break down each expression step by step:
1. 1/2 + 1/3: To add fractions, we need to find a common denominator. In this case, the least common multiple (LCM) of 2 and 3 is 6. Therefore, we can rewrite the expression as (3/6) + (2/6) = 5/6.
2. -1/5 + 3/5: Since the denominators are the same, we can directly add the numerators: (-1 + 3) / 5 = 2/5.
3. 3/7 - (1/2 + 1/4): First, let's simplify the expression inside the parentheses. (1/2 + 1/4) = (2/4 + 1/4) = 3/4. Now, subtracting fractions with the same denominator, we have: 3/7 - 3/4. To subtract fractions, we need to find a common denominator. The LCM of 7 and 4 is 28. Therefore, we can rewrite the expression as (12/28) - (21/28) = -9/28.
4. -2/5 + (1/10 - 7/15): First, let's simplify the expression inside the parentheses. (1/10 - 7/15) = (3/30 - 14/30) = -11/30. Now, adding fractions with the same denominator, we have: -2/5 + (-11/30). To add fractions, we need to find a common denominator. The LCM of 5 and 30 is 30. Therefore, we can rewrite the expression as (-12/30) + (-11/30) = -23/30.
5. (3/14 - 11/28) - 1/2: First, let's simplify the expression inside the parentheses. (3/14 - 11/28) = (6/28 - 11/28) = -5/28. Now, subtracting fractions with the same denominator, we have: -5/28 - 1/2. To subtract fractions, we need to find a common denominator. The LCM of 28 and 2 is 28. Therefore, we can rewrite the expression as (-5/28) - (14/28) = -19/28.
6. -3/7 + (1/14 - 2/21): First, let's simplify the expression inside the parentheses. (1/14 - 2/21) = (3/42 - 4/42) = -1/42. Now, adding fractions with the same denominator, we have: -3/7 + (-1/42). To add fractions, we need to find a common denominator. The LCM of 7 and 42 is 42. Therefore, we can rewrite the expression as (-18/42) + (-1/42) = -19/42.
7. (2/5 - 9/10) + 1/3: First, let's simplify the expression inside the parentheses. (2/5 - 9/10) = (4/10 - 9/10) = -5/10 = -1/2. Now, adding fractions, we have: (-1/2) + (1/3). To add fractions, we need to find a common denominator. The LCM of 2 and 3 is 6. Therefore, we can rewrite the expression as (-3/6) + (2/6) = -1/6.
8. (2/7 - 1/14) - 5/21: First, let's simplify the expression inside the parentheses. (2/7 - 1/14) = (4/14 - 1/14) = 3/14. Now, subtracting fractions, we have: (3/14) - (5/21). To subtract fractions, we need to find a common denominator. The LCM of 14 and 21 is 42. Therefore, we can rewrite the expression as (9/42) - (10/42) = -1/42.
So, the solutions to the given expressions are: 1. 1/2 + 1/3 = 5/6 2. -1/5 + 3/5 = 2/5 3. 3/7 - (1/2 + 1/4) = -9/28 4. -2/5 + (1/10 - 7/15) = -23/30 5. (3/14 - 11/28) - 1/2 = -19/28 6. -3/7 + (1/14 - 2/21) = -19/42 7. (2/5 - 9/10) + 1/3 = -1/6 8. (2/7 - 1/14) - 5/21 = -1/42


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili