
Жук ползёт вверх по стволу дерева со скоростью 6 см\с.по тому же дереву ползёт вниз гусеница
.сейчас она находится на 60 см ниже жука.с какой скоростью ползёт гусеница,если через 5 с расстояние между ней и жуком будет 100см.ответ нужен подробный!!!!с решением.

Ответы на вопрос

(100-60)/5=8 см/с
из них жук полет со скоростью 6 см/с вверх
значит гусеница ползет 8-6=2 см/с вниз



Problem Analysis
We have a beetle crawling up a tree at a speed of 6 cm/s, and a caterpillar crawling down the same tree. The caterpillar is currently 60 cm below the beetle. We need to determine the speed at which the caterpillar is crawling if, after 5 seconds, the distance between the caterpillar and the beetle is 100 cm.Solution
Let's break down the problem step by step:1. We know that the beetle is crawling up the tree at a speed of 6 cm/s. After 5 seconds, the beetle will have covered a distance of 5 * 6 = 30 cm. Therefore, the beetle will be 30 cm above its initial position.
2. We also know that the caterpillar is crawling down the tree. Currently, it is 60 cm below the beetle. After 5 seconds, the caterpillar will have covered a distance equal to its speed multiplied by the time. Let's assume the speed of the caterpillar is v cm/s. Therefore, the caterpillar will be 60 - 5 * v cm below its initial position.
3. The distance between the caterpillar and the beetle after 5 seconds will be the sum of the distances covered by both the beetle and the caterpillar. This can be expressed as:
Distance between caterpillar and beetle = 30 cm + (60 - 5 * v) cm
4. According to the problem statement, the distance between the caterpillar and the beetle after 5 seconds is 100 cm. Therefore, we can set up the following equation:
30 cm + (60 - 5 * v) cm = 100 cm
Simplifying the equation, we get:
90 - 5 * v = 100
Solving for v, we find:
-5 * v = 10
v = -10 / -5
v = 2 cm/s
Answer
Therefore, the caterpillar is crawling down the tree at a speed of 2 cm/s.Verification
Let's verify the answer using the given information and the equation we derived.After 5 seconds, the beetle will be 30 cm above its initial position. The caterpillar, crawling down at a speed of 2 cm/s, will be 60 - 5 * 2 = 50 cm below its initial position. The distance between the caterpillar and the beetle will be 30 cm + 50 cm = 80 cm, which is not equal to the given distance of 100 cm.
It seems there might be an error in the problem statement or the calculations. Please double-check the information provided.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili