Вопрос задан 26.02.2019 в 09:21. Предмет Математика. Спрашивает Расколов Тёма.

Галчонок прыгает и шагает по ГалчонокГалчонок прыгает и шагает по Галчонок прыгает и шагает по

лучу.Каждый его шаг равен одному делению луча,а каждыйпрыжок-трём делениям.От точки О галчонок сделал 4 прыжка и 5 шагов.В какой точке оноказался?Потом галчонок сделал ещё 5 прыжков и 2 шага.в какой точке он может находиться теперь.сделай чертеж и реши задачу.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сидоркина Юля.
4 прыжка по три деления= 12 делений и 5 шагов по одному делению = 5 делений вместе 17 делений на луче.
Нарисовать вправо 17 делений.
5 прыжков по три деления это ещё 15 делений и 2 шага = 17 делений. Всего 34 деления.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

In this problem, we are given that a bird named Galchonok jumps and walks along a ray. Each step of Galchonok is equal to one division of the ray, and each jump is equal to three divisions. We are given that Galchonok made 4 jumps and 5 steps from point O, and we need to determine the point where Galchonok ended up. After that, Galchonok made 5 more jumps and 2 steps, and we need to find the point where Galchonok could be now.

Solution

Let's start by solving the first part of the problem, where Galchonok made 4 jumps and 5 steps from point O.

To find the point where Galchonok ended up, we can calculate the total distance covered by Galchonok. Since each step is equal to one division and each jump is equal to three divisions, we can calculate the total distance as follows:

Total distance = (5 * 1) + (4 * 3)

Simplifying the above expression, we get:

Total distance = 5 + 12

Total distance = 17 divisions

Since Galchonok started from point O, we can count 17 divisions from point O to find the point where Galchonok ended up.

Now, let's move on to the second part of the problem, where Galchonok made 5 more jumps and 2 steps.

To find the point where Galchonok could be now, we need to calculate the total distance covered by Galchonok in this part. Using the same logic as before, we can calculate the total distance as follows:

Total distance = (2 * 1) + (5 * 3)

Simplifying the above expression, we get:

Total distance = 2 + 15

Total distance = 17 divisions

Since Galchonok started from the point where it ended up in the first part (17 divisions from point O), we can count 17 divisions from that point to find the point where Galchonok could be now.

Diagram

Here is a diagram to illustrate the problem:

``` O-------------------> (Ray) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос