Вопрос задан 25.02.2019 в 04:25. Предмет Математика. Спрашивает Кечин Женя.

Моторная лодка прошла против течения реки 77 км и вернулась в пункт отправления, затратив на

обратный путь на 4 часа меньше. Найдите скорость течения,если скорость лодки в неподвижной воде равна 9км/ч. Ответ дайте в км/ч.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Сергей.

Пусть скорость течения Х тогда время против течения  77/(Х-9)   Время по течению 77/(Х+9)  77/(Х-9)-77/(х+9)=4  Отсюда  Х=3км/час
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of River Current Speed

To find the speed of the river current, we can use the formula:

Speed of the river current = (Total distance traveled) / (Total time taken) - (Speed of the boat in still water)

Given information: - Distance traveled against the current = 77 km - Time taken for the return journey = 4 hours less than the time taken for the forward journey - Speed of the boat in still water = 9 km/h

Let's calculate the speed of the river current step by step.

1. Calculate the time taken for the forward journey: - Let's assume the time taken for the forward journey is t hours. - Distance = Speed × Time - Distance traveled against the current = Speed of the boat in still water - Speed of the river current - Distance traveled against the current = (9 km/h - Speed of the river current) × t hours - Distance traveled against the current = 77 km - Therefore, (9 km/h - Speed of the river current) × t = 77 km

2. Calculate the time taken for the return journey: - The time taken for the return journey is 4 hours less than the time taken for the forward journey. - Time taken for the return journey = t - 4 hours

3. Calculate the distance traveled with the current: - Distance traveled with the current = (9 km/h + Speed of the river current) × (t - 4) hours

4. Calculate the total distance traveled: - Total distance traveled = Distance traveled against the current + Distance traveled with the current - Total distance traveled = 77 km + (9 km/h + Speed of the river current) × (t - 4) hours

5. Calculate the total time taken: - Total time taken = Time taken for the forward journey + Time taken for the return journey - Total time taken = t hours + (t - 4) hours

Now, we can substitute the values and solve for the speed of the river current.

Solution:

1. Substitute the values in the equation for the total distance traveled: - 77 km + (9 km/h + Speed of the river current) × (t - 4) hours = (9 km/h - Speed of the river current) × t hours

2. Simplify the equation: - 77 km + 9t - 36 km/h - 4 Speed of the river current = 9t - Speed of the river current × t

3. Rearrange the equation: - 77 km - 36 km/h = -4 Speed of the river current - Speed of the river current × t

4. Simplify further: - 41 km = -5 Speed of the river current - Speed of the river current × t

5. Divide both sides of the equation by -5: - (41 km) / (-5) = Speed of the river current + Speed of the river current × t

6. Simplify: - -8.2 km/h = Speed of the river current + Speed of the river current × t

7. Factor out the Speed of the river current: - -8.2 km/h = Speed of the river current × (1 + t)

8. Solve for the Speed of the river current: - Speed of the river current = -8.2 km/h / (1 + t)

Based on the given information, we don't have the exact value of t (time taken for the forward journey). Therefore, we cannot determine the exact speed of the river current without knowing the value of t.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос