Вопрос задан 24.02.2019 в 10:02. Предмет Математика. Спрашивает Мельчакова Вероника.

Разложите 2^32+2^16+1 на два сомножителя большие 30000

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Верченко Алена.
2^32=(2^16)²; 1=1²; a²-b²=(a-b)·(a+b)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы разложить число 2^32 + 2^16 + 1 на два сомножителя, которые будут больше 30000, мы можем воспользоваться формулой разности квадратов.

Сначала выразим данное число в виде разности квадратов:

2^32 + 2^16 + 1 = (2^16)^2 + 2 * 2^16 + 1^2

Теперь мы можем применить формулу разности квадратов:

(2^16 + 1)^2 = (2^16)^2 + 2 * 2^16 + 1^2

Таким образом, мы получили разложение числа 2^32 + 2^16 + 1 на два сомножителя, которые равны (2^16 + 1) и (2^16 + 1). Очевидно, что оба сомножителя больше 30000.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос