Вопрос задан 24.02.2019 в 04:31. Предмет Математика. Спрашивает Гулиян Борис.

Для борьбы с паводком на реке была построена плотина. на ее стене через каждые 10см нанесли

отметки, которые показывают уровень воды в реке. перед началом паводка вода находилась на отметке 2м 20см.затем каждый час уровень воды повышался на 5см. за какое время вода поднялась на 95см? сколько отметок выше 2м20см за это время оказалось под водой?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Поляков Даниил.
2м20см=220см
1)95:5=19(год.)- вода поднялась на 95.
2)220+95=315(см)-

0 0
Отвечает Тибейкина Полина.
Ну подели 95 на 5,и получишь сколько часов
а отметок выше 2.20 осталось под водой 9
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Time and Number of Markers

To determine the time it took for the water to rise by 95 cm and the number of markers that ended up underwater, we can use the given information.

The water initially was at a level of 2 meters 20 centimeters (or 220 cm) It then rose by 5 centimeters (or 5 cm) every hour.

To calculate the time it took for the water to rise by 95 cm, we can divide 95 cm by 5 cm/hour:

Time = 95 cm / 5 cm/hour = 19 hours.

Therefore, it took 19 hours for the water to rise by 95 cm.

To calculate the number of markers that ended up underwater, we need to determine how many markers are above the initial water level of 2 meters 20 centimeters (or 220 cm).

Since each marker is placed every 10 cm, we can calculate the number of markers above 220 cm by subtracting 220 cm from 95 cm and then dividing by 10 cm:

Number of markers above 220 cm = (95 cm - 220 cm) / 10 cm = -125 cm / 10 cm = -12.5 markers.

Since we cannot have a fraction of a marker, we can conclude that no markers ended up above the initial water level of 2 meters 20 centimeters (or 220 cm).

Therefore, no markers ended up underwater.

Please let me know if there is anything else I can help#### Problem Analysis To solve this problem, we need to determine how long it took for the water level to rise by 95 cm and how many marks above the initial water level of 2m 20cm were submerged.

Solution

Let's break down the problem step by step:

1. Initial water level: 2m 20cm 2. Water level increases by 5cm every hour. 3. We need to find the time it takes for the water level to rise by 95cm. 4. We also need to determine how many marks above 2m 20cm were submerged.

To find the time it takes for the water level to rise by 95cm, we can divide 95cm by the rate of increase, which is 5cm per hour:

Time = 95cm / 5cm per hour

To determine how many marks above 2m 20cm were submerged, we can divide the total increase in water level (95cm) by the distance between each mark (10cm):

Number of marks submerged = 95cm / 10cm

Let's calculate the answers:

Time = 95cm / 5cm per hour = 19 hours

Number of marks submerged = 95cm / 10cm = 9.5 marks

Since we cannot have half a mark, we can round down the number of marks submerged to the nearest whole number. Therefore, the number of marks above 2m 20cm that were submerged is 9 marks.

Answer

The water level rose by 95cm in 19 hours, and 9 marks above the initial water level of 2m 20cm were submerged.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос