
Вопрос задан 24.02.2019 в 02:17.
Предмет Математика.
Спрашивает Щукин Егор.
Решите неравенство Log(5x-1)2 меньше равен 0 (5x-1) основание


Ответы на вопрос

Отвечает Зякун Илона.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения неравенства Log(5x-1)^2 <= 0 с основанием 5, мы должны найти значения x, при которых выражение Log(5x-1)^2 меньше или равно нулю.
Шаг 1: Найти область определения
Выражение 5x-1 должно быть положительным, так как логарифм отрицательного числа не определен. Решим неравенство 5x-1 > 0: ``` 5x - 1 > 0 5x > 1 x > 1/5 ``` Таким образом, область определения неравенства - x > 1/5.Шаг 2: Решить неравенство
Теперь мы можем решить неравенство Log(5x-1)^2 <= 0 в области определения x > 1/5.Заметим, что квадрат логарифма всегда будет положительным или равным нулю. Таким образом, неравенство Log(5x-1)^2 <= 0 будет выполняться только тогда, когда выражение 5x-1 равно 1.
Решим уравнение 5x-1 = 1: ``` 5x - 1 = 1 5x = 2 x = 2/5 ```
Таким образом, решение неравенства Log(5x-1)^2 <= 0 с основанием 5 - это x = 2/5.
Ответ:
Решение неравенства Log(5x-1)^2 <= 0 с основанием 5 - это x = 2/5.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili