Вопрос задан 23.02.2019 в 15:53. Предмет Математика. Спрашивает Бондаренко Александра.

Машина едет на вокзал со скоростью 60 км / ч . До вокзала 30 км . Нужно ли водителю увеличить

скорость , чтобы приехать за 20 минут до отхода поезда , если поезд отправляется через 40 минут .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петросян Роксана.
Да если он не прибавит то приедет через 30 мин


0 0
Отвечает Гресь Ирина.
Да.
Если он не увеличит скорость, он приедет через 30 мин, соответственно, надо увеличить. 
Удачи!)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

The problem states that a car is traveling at a speed of 60 km/h towards a train station that is 30 km away. The driver wants to know if they need to increase their speed in order to arrive 20 minutes before the train departs, given that the train is scheduled to leave in 40 minutes.

Solution

To determine if the driver needs to increase their speed, we need to calculate the time it will take for the car to reach the train station at its current speed and compare it to the time remaining before the train departs.

Calculation

The time it takes for the car to reach the train station at its current speed can be calculated using the formula:

Time = Distance / Speed

Given that the distance to the train station is 30 km and the speed of the car is 60 km/h, we can calculate the time as follows:

Time = 30 km / 60 km/h

Simplifying the equation, we get:

Time = 0.5 hours

Since there are 60 minutes in an hour, we can convert the time to minutes:

Time = 0.5 hours * 60 minutes/hour = 30 minutes

Therefore, it will take the car 30 minutes to reach the train station at its current speed.

Time Remaining

The time remaining before the train departs is given as 40 minutes.

Comparison

Now, we can compare the time it will take for the car to reach the train station (30 minutes) with the time remaining before the train departs (40 minutes).

If the time it takes for the car to reach the train station is less than or equal to the time remaining before the train departs, then the driver does not need to increase their speed. However, if the time it takes for the car to reach the train station is greater than the time remaining before the train departs, then the driver needs to increase their speed.

In this case, since the time it takes for the car to reach the train station (30 minutes) is less than the time remaining before the train departs (40 minutes), the driver does not need to increase their speed. They will arrive at the train station before the train departs.

Conclusion

The driver does not need to increase their speed in order to arrive 20 minutes before the train departs. They will reach the train station before the train departs even at their current speed of 60 km/h.

Please note that the calculations provided are based on the information given in the problem statement.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос