Вопрос задан 23.02.2019 в 08:55. Предмет Математика. Спрашивает Шарафутдинов Дима.

Ширина прямоугольника 12 см, что составляет 4/7 его длины? И как найти его площадь и периметр

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мухина Александра.
1)12:4х7=21(см)-длинна
дано:
а=12см
в=21см
S-?
S=a*в
S=12*21
S=252кв.см
Р=12*2+21*2
Р=66см
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с расчета длины прямоугольника.

Дано, что ширина прямоугольника составляет 12 см и равна 4/7 его длины.

Обозначим длину прямоугольника как \(L\) см.

Исходя из условия, у нас есть уравнение:

\(\frac{4}{7} \cdot L = 12\) (ширина прямоугольника равна 4/7 его длины)

Чтобы найти длину прямоугольника \(L\), давайте избавимся от дроби, умножив обе стороны уравнения на \(\frac{7}{4}\):

\(L = 12 \cdot \frac{7}{4}\)

\(L = 21\)

Теперь мы знаем, что длина прямоугольника составляет 21 см.

Чтобы найти площадь прямоугольника, используем формулу:

\(\text{Площадь} = \text{Ширина} \times \text{Длина}\)

Ширина равна 12 см, а длина равна 21 см:

\(\text{Площадь} = 12 \times 21 = 252\)

Площадь прямоугольника составляет 252 квадратных сантиметра.

Чтобы найти периметр прямоугольника, используем формулу:

\(\text{Периметр} = 2 \times (\text{Ширина} + \text{Длина})\)

Для данного прямоугольника:

\(\text{Периметр} = 2 \times (12 + 21) = 2 \times 33 = 66\)

Периметр прямоугольника равен 66 сантиметрам.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос