
СЕВА И ГРУША КУПИЛИ 8 ПИОНОВ ПО ОДИНОКОВОЙ ЦЕНЕ. СЕВА ЗАПЛАТИЛ ЗА ПИОНЫ 45 РУБ. А ГРУША-27 РУБ.
СКОЛЬКО ПИОНОВ КУПИЛ КАЖДЫЙ

Ответы на вопрос







Solution:
To solve this problem, we can use a system of equations to represent the given information and then solve for the number of pions each person bought.
Let's denote the number of pions Seva bought as S and the number of pions Grusha bought as G. We know that Seva and Grusha together bought 8 pions, so we have the equation:
S + G = 8
We also know that Seva paid 45 rubles for the pions, and Grusha paid 27 rubles for the pions. Since the pions were bought at the same price, we can set up another equation:
45S = 27G
We can solve this system of equations to find the values of S and G.
Calculation:
Let's solve the system of equations:
S + G = 8
45S = 27G
We can solve the first equation for S:
S = 8 - G
Now, we can substitute this value of S into the second equation:
45(8 - G) = 27G
Expanding and simplifying:
360 - 45G = 27G
Bringing all the terms involving G to one side:
360 = 72G
Finally, solving for G:
G = 360 / 72 = 5
Now that we have the value of G, we can find the value of S using the equation S = 8 - G:
S = 8 - 5 = 3
Answer:
So, Seva bought 3 pions and Grusha bought 5 pions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili