Вопрос задан 22.02.2019 в 09:55. Предмет Математика. Спрашивает Агафонова Анна.

Задача мотоцикл проехал расстояние от одного города до другого за 3 часа двигаясь со скоростью

54км/ч сколько времени потребуется мотоциклисту на обратный путь но уже по другой дороге если она длиннее первой на 22 км а его скорость будет меньше прежней на 8 км/ч
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедева Лиза.
54×3=162 км весь путь за 3 часа 54-8=46 км ч 162+22=184км 184:46=4
0 0
Отвечает Муратбеков Жанадиль.
1)54х3=162(км)-путь туда
2)162+22=184(км)-обр путь
3)54-8=46(км/ч)-скорость на обр путь
4)184:46=4(ч)
ответ:4 часа потреб на обр путь
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a motorcycle traveled a certain distance from one city to another in 3 hours at a speed of 54 km/h. We need to determine how long it will take the motorcyclist to return on a different road, which is longer by 22 km, and at a reduced speed of 8 km/h.

Solution

To find the time it will take the motorcyclist to return, we can use the formula: time = distance / speed.

Let's calculate the distance traveled by the motorcycle on the first road using the given speed and time: distance = speed * time. Substituting the values, we get: distance = 54 km/h * 3 hours.

Now, let's calculate the time it will take the motorcyclist to return on the longer road at a reduced speed. The distance on the longer road is the distance on the first road plus the additional 22 km: distance on the longer road = distance on the first road + 22 km.

The speed on the return journey is reduced by 8 km/h, so the new speed is: new speed = speed - 8 km/h.

Finally, we can calculate the time it will take for the motorcyclist to return on the longer road using the formula: time = distance on the longer road / new speed.

Let's plug in the values and calculate the time.

Calculation

Given: - Speed on the first road = 54 km/h - Time taken on the first road = 3 hours - Additional distance on the longer road = 22 km - Reduction in speed on the longer road = 8 km/h

1. Calculate the distance on the first road: - Distance = Speed * Time - Distance = 54 km/h * 3 hours - Distance = 162 km

2. Calculate the distance on the longer road: - Distance on the longer road = Distance on the first road + Additional distance - Distance on the longer road = 162 km + 22 km - Distance on the longer road = 184 km

3. Calculate the new speed on the longer road: - New speed = Speed - Reduction in speed - New speed = 54 km/h - 8 km/h - New speed = 46 km/h

4. Calculate the time taken on the longer road: - Time = Distance on the longer road / New speed - Time = 184 km / 46 km/h - Time = 4 hours

Answer

The motorcyclist will take 4 hours to return on the longer road.

Verification

Let's verify the answer using the given information and calculations:

- The motorcyclist traveled a distance of 162 km on the first road at a speed of 54 km/h in 3 hours. - The motorcyclist then traveled an additional 22 km on the longer road, making the total distance 184 km. - The motorcyclist's speed on the longer road was reduced by 8 km/h to 46 km/h. - Using the formula time = distance / speed, we calculated the time taken on the longer road to be 4 hours.

Therefore, the answer is verified.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос