Вопрос задан 21.02.2019 в 21:20. Предмет Математика. Спрашивает Матюкова Арина.

В треугольнике авс, угол С 90, АВ 49 градусов угол А 57 градусов.Найти АН

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.
нет никакого СПИДа B равен 90 градусов а угол 10
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Task: Find AN in triangle ABC

To find the length of AN in triangle ABC, we need to use the given information about the triangle's angles and sides.

Given: - Angle C = 90 degrees - Angle A = 57 degrees - Angle B = 180 - (90 + 57) = 33 degrees - Side AB = 49 degrees

To find AN, we can use trigonometric ratios. Since we know the angle A and the side AB, we can use the sine ratio.

The sine ratio states that the ratio of the length of the side opposite an angle to the length of the hypotenuse is equal to the sine of that angle.

In triangle ABC, angle A is opposite side BC, and angle C is the right angle. So, we can use the sine ratio to find the length of side BC.

Let's calculate BC using the sine ratio:

sin(A) = BC / AB

Rearranging the equation, we get:

BC = AB * sin(A)

Substituting the given values:

BC = 49 * sin(57)

Now, we have the length of side BC. To find AN, we can use the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

In triangle ABC, AN is the hypotenuse, and BC and AC are the other two sides. So, we can use the Pythagorean theorem to find AN.

Let's calculate AN using the Pythagorean theorem:

AN^2 = BC^2 + AC^2

Substituting the values we have:

AN^2 = (BC)^2 + (AC)^2

Now, we need to find AC. We can use the sine ratio again, this time for angle B:

sin(B) = AC / AB

Rearranging the equation, we get:

AC = AB * sin(B)

Substituting the given values:

AC = 49 * sin(33)

Now, we have the lengths of BC and AC. Let's substitute these values into the equation for AN:

AN^2 = (BC)^2 + (AC)^2

AN^2 = (49 * sin(57))^2 + (49 * sin(33))^2

Simplifying the equation, we can calculate AN:

AN = sqrt((49 * sin(57))^2 + (49 * sin(33))^2)

Calculating this expression will give us the length of AN in triangle ABC.

Please note that the calculations provided above are based on the given information and mathematical principles.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос