Вопрос задан 15.02.2019 в 03:24. Предмет Математика. Спрашивает Кураев Хажмурат.

У 3 мухи и у 2 тараканов всего 34 ног. У 2 мух и у 2 тараканов всего 28 ног. Сколько ног у мухи?

Сколько ног у таракана? Помогите, молю вас!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мороз Вадим.
34-28=6ног у одной мухи
6*3=18 ног у 3 мух
34-18=16 НОГ У 2 тараканов
16/2=8 ног у таракана
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the information that there are 3 flies and 2 cockroaches, and the total number of legs is 34. Additionally, we are told that 2 flies and 2 cockroaches have a total of 28 legs. We need to determine the number of legs a fly and a cockroach have.

Solution

Let's assume that a fly has f legs and a cockroach has c legs.

From the given information, we can form the following equations: 1. For 3 flies and 2 cockroaches, the total number of legs is 34: 3f + 2c = 34. 2. For 2 flies and 2 cockroaches, the total number of legs is 28: 2f + 2c = 28.

To solve this system of equations, we can use substitution or elimination. Let's use the elimination method.

Multiplying equation 2 by 3, we get: 6f + 6c = 84.

Subtracting equation 1 from equation 2, we get: (6f + 6c) - (3f + 2c) = 84 - 34.

Simplifying the equation, we have: 3f + 4c = 50.

Now we have a new equation: 3f + 4c = 50.

To solve for the values of f and c, we can multiply equation 1 by 2 and subtract it from equation 2.

Multiplying equation 1 by 2, we get: 6f + 4c = 68.

Subtracting equation 1 from equation 2, we get: (6f + 4c) - (3f + 2c) = 68 - 34.

Simplifying the equation, we have: 3f + 2c = 34.

Now we have a new equation: 3f + 2c = 34.

We can solve this system of equations to find the values of f and c.

Solution Steps

1. Solve the system of equations: - Equation 1: 3f + 2c = 34 - Equation 2: 3f + 4c = 50 2. Subtract equation 1 from equation 2 to eliminate f and solve for c. 3. Substitute the value of c into equation 1 to solve for f. 4. Verify the solution using the given information. 5. Provide the final answer.

Solution

Let's solve the system of equations to find the values of f and c.

Subtracting equation 1 from equation 2, we get: (3f + 4c) - (3f + 2c) = 50 - 34.

Simplifying the equation, we have: 2c = 16.

Dividing both sides of the equation by 2, we get: c = 8.

Substituting the value of c into equation 1, we have: 3f + 2(8) = 34.

Simplifying the equation, we get: 3f + 16 = 34.

Subtracting 16 from both sides of the equation, we have: 3f = 18.

Dividing both sides of the equation by 3, we get: f = 6.

Therefore, a fly has 6 legs and a cockroach has 8 legs.

Answer

Based on the given information, a fly has 6 legs and a cockroach has 8 legs.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос