Вопрос задан 14.02.2019 в 21:15. Предмет Математика. Спрашивает Шмырёва Наташа.

Турист прошел за три дня 64 км.В первый день он прошел 25% всего маршрута.Путь пройденный в первый

день составляет 40% расстояния,пройденного во второй день.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жихарев Даня.
64*0,25=16км перый день
16/0,4=40км второй день
64-(16+40)= 8 км
Ответ:8 км
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Total Distance and Distance Covered on the First Day

To answer the question, let's break down the information provided:

- The tourist walked a total of 64 km in three days. - On the first day, the tourist covered 25% of the total distance. - The distance covered on the first day is 40% of the distance covered on the second day.

To calculate the total distance covered on the first day, we can use the information provided. Let's denote the total distance as D and the distance covered on the first day as D1.

According to the information given, the distance covered on the first day is 25% of the total distance:

D1 = 0.25 * D We are also told that the distance covered on the first day is 40% of the distance covered on the second day. Let's denote the distance covered on the second day as D2.

D1 = 0.4 * D2

Solving the Equations

To find the values of D, D1, and D2, we can solve the system of equations formed by the two equations above.

Substituting the value of D1 from the first equation into the second equation, we get:

0.25 * D = 0.4 * D2

Simplifying the equation, we have:

D2 = (0.25 * D) / 0.4

Simplifying further, we find:

D2 = (5 * D) / 8

Now, we can substitute this value of D2 back into the first equation to find D1:

D1 = 0.25 * D = 0.25 * (5 * D) / 8 = (5 * D) / 32

Calculating the Values

To find the values of D, D1, and D2, we need to solve the equations further. Let's denote the value of D as d for simplicity.

From the information given, we know that the total distance covered in three days is 64 km:

D = 64 km

Substituting this value into the equations for D1 and D2, we get:

D1 = (5 * d) / 32

D2 = (5 * d) / 8

Now, we can solve for d by equating the sum of D1, D2, and the distance covered on the third day to the total distance D:

(5 * d) / 32 + (5 * d) / 8 + d = 64

Simplifying the equation, we have:

(5 * d) / 32 + (20 * d) / 32 + (32 * d) / 32 = 64

Combining the terms, we get:

(57 * d) / 32 = 64

To solve for d, we can multiply both sides of the equation by 32/57:

d = (64 * 32) / 57

Evaluating this expression, we find:

d ≈ 35.789 km

Calculation Results

Based on the calculations, the total distance covered by the tourist is approximately 35.789 km. The distance covered on the first day is approximately 1.117 km (rounded to three decimal places), and the distance covered on the second day is approximately 4.471 km (rounded to three decimal places).

Please note that these calculations are based on the information provided and the assumptions made.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос