Вопрос задан 29.01.2019 в 23:03. Предмет Математика. Спрашивает Глубинок Настя.

Точка О – центр вписанной в треугольник АВС окружности. К плоскости данного треугольника проведен

перпендикуляр ОК. Найдите расстояние от точки К до сторон треугольника, если АВ=ВС=30 см., АС=36 см., ОК=18 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Трубина Анастасия.
В плоскости треугольника АВС из точки О проведем перпендикуляр ОМ на сторону АС, соединим К и М. По теореме о трех перпендикулярах МК будет перпендикулярен АС, значит КМ искомое расстояние. Аналогично можно поступить и со сторонами АВ и ВС, проведя перпендикуляры ОТ и ОР. Все найденные расстояния будут равны, т. к. ОТ=ОР=ОМ как радиусы вписанной окружности. А это радиусы, т. к. радиус, проведенный в точку касания будет перпендикулярен этой касательной. Для нахождения МК нам понадобится радиус ОМ. Его будем искать по формуле S=1/2*P*r. r=2S/P. P периметр треугольника, S его площадь. S можете искать по формуле Герона или обычным способом, проведя высоту. S=48. r=96/32=3. Теперь найдем МК=корень из (KO^2+OM^2)=5
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос