Вопрос задан 15.01.2019 в 23:05. Предмет Математика. Спрашивает Штебнер Яночка.

Никак не могу понять эти модули, помогите решить(( |4x-1|+|x+3|=5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Прокудина Даша.
Уравнения с модулями решаются по следующему общему алгоритму:
1. Найти нули подмодульных выражений
4x-1 = 0 и x+3 = 0
x=1/4  и x = -3
2. Полученные нули разбивают координатную прямую на три промежутка: x>1/4, -3≤x≤1/4, x<-3. Будем раскрывать модули на каждом из промежутков.
1. x>1/4. Здесь оба подмодульных выражения положительны. Тогда:
4x-1+x+3=5
5x=3
x=3/5.
Проверяем, дейстительно ли найденный корень принадлежит рассматриваемому промежутку. В нашем случае, да, принадлежит.
2.  -3≤x≤1/4 На этом промежутке первое подмодульное выражение становится отрицательным, а второе остается положительным.
Значит:
-4x+1+x+3=5
-3x=1
x=-1/3
Опять проверяем, дейстительно ли найденный корень принадлежит рассматриваемому промежутку. В нашем случае, да, принадлежит.

3. x<-3. На этом промежутке оба подмодульных выражения становятся отрицательными:
-4x+1-x-3=5
-5x=7
x=-7/5
Этот корень не принадлежит рассматриваемому промежутку, он посторонний, значит, на этом промежутке корней у нашего уравнения нет.

Ответ: x=-1/3, x=3/5.

В приложенном файле графическая иллюстрация решения.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос