Вопрос задан 29.12.2018 в 01:17. Предмет Математика. Спрашивает Чижик Марічка.

Медианы PE и QF треугольника РQR пересекаются в точке S. Найдите длину отрезка PQ, если SR равен 2

и известно, что вокруг четырехугольника SERF можно описать окружность. Спасибо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шевченко Катерина.
Обозначим QE=ER=y и SF=z. Тогда, т.к. точка пересечения медиан делит их в отношении 2:1, то SQ=2z. Т.к. SERF - вписанный, то ∠SFE=∠ERS как вписанные в окружность углы, а значит, треугольники QFE и QRS подобны по двум углам. Поэтому QF/QR=QE/QS=EF/SR, т.е. 3z/2y=y/2z=FE/2. Из первого равенства y=z√3, тогда из второго FE=√3. Значит PQ=2FE=2√3.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос