
Вопрос задан 28.12.2018 в 22:23.
Предмет Математика.
Спрашивает Бальжинимаев Даши.
Докажите,что в равнобедренном треугольнике биссектриса,проведенная к основанию,делит его на два
треугольника с равными периметрами

Ответы на вопрос

Отвечает Насретдинов Дима.
Труегольник авс. провели биссектрису ан. строны ав и ас равны т.к. треугольник равнобедренный, и углы авс и асв равны из-за того же. углы ван и сан равны т.к. биссектриса поделила угол а пополам. отсюда следует что треугольник ван равен треугольнику сан по стороне и двум прилежащим угла. а если треугольники равны, то и периметры их равнв



Отвечает Жернакова Алина.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Следовательно, основание АС делится на два равных отрезка АН и НС, и угол ВНС является прямым.
Мы получаем два прямоугольных треугольника, у которых все три стороны равны:
АВ = ВС, т.к. треугольник равнобедренный по условию;
АН = НС, т.к. ВН - медиана;
ВН - общая сторона
По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
Годится и второй признак равенства треугольников: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. В нашем случае:
АВ = ВС по условию;
угол А равен углу С, т.к. углы при основании равнобедренного треугольника равны;
угол АВН равен углу СВН, т.к. ВН - биссектриса
Первый признак равенства треугольников тоже подходит: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. В нашем случае:
АВ = ВС по условию
АН = НС, т.к. ВН - медиана
угол А равен углу С, т.к. в равнобедренном треугольнике углы при основании равны.
Мы получаем два прямоугольных треугольника, у которых все три стороны равны:
АВ = ВС, т.к. треугольник равнобедренный по условию;
АН = НС, т.к. ВН - медиана;
ВН - общая сторона
По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
Годится и второй признак равенства треугольников: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. В нашем случае:
АВ = ВС по условию;
угол А равен углу С, т.к. углы при основании равнобедренного треугольника равны;
угол АВН равен углу СВН, т.к. ВН - биссектриса
Первый признак равенства треугольников тоже подходит: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. В нашем случае:
АВ = ВС по условию
АН = НС, т.к. ВН - медиана
угол А равен углу С, т.к. в равнобедренном треугольнике углы при основании равны.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili