Вопрос задан 26.10.2018 в 20:54. Предмет Математика. Спрашивает Рамазанова Эвелина.

Имеется сто билетов с номерами 00, 01, 02, ..., 98, 99 и десять ящиков с номерами 0, 1, 2, ..., 9.

Билет разрешается опускать в ящик, если номер ящика содержится в записи номера билета. Какое наименьшее количество билетов может оказаться в одном из ящиков после раскладывания всех билетов по указанному правилу? Варианты ответа: 9, 2, 1, ни одного. Решение можно не писать.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Семенюк Настя.
9,19,29,39,49,59,69,79,89,99, и 90,91,92,93,94,95,96,97,98 всего 19.Это наиБОЛЬШЕЕ кол-во.00,01,02,03,04,05,06,07,08,09,10,20,30,40,50,60,70,80,90 всего 19 тоже.

А вот 00 можно бросить только в ящик 0. НаиМЕНЬШЕЕ кол-во - 1 билет.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have 100 tickets numbered from 00 to 99 and 10 boxes numbered from 0 to 9. A ticket can be placed in a box if the box number is present in the ticket number. We need to determine the minimum number of tickets that can be placed in any of the boxes according to this rule.

Solution

To find the minimum number of tickets that can be placed in a box, we need to consider the box numbers and the ticket numbers.

Let's analyze the box numbers first. There are 10 boxes numbered from 0 to 9. Each box number is a single digit.

Now let's analyze the ticket numbers. There are 100 tickets numbered from 00 to 99. Each ticket number consists of two digits.

To determine if a ticket can be placed in a box, we need to check if the box number is present in the ticket number. For example, ticket number 23 can be placed in box number 2 because the digit 2 is present in the ticket number. Similarly, ticket number 45 can be placed in box number 4.

To find the minimum number of tickets that can be placed in a box, we need to count the number of tickets that have each box number in their digits. For example, to find the minimum number of tickets that can be placed in box number 2, we need to count the number of tickets that have the digit 2 in their digits.

Let's calculate the minimum number of tickets that can be placed in each box:

- Box 0: There are 10 tickets (00, 10, 20, ..., 90) that have the digit 0 in their digits. - Box 1: There are 20 tickets (01, 10, 11, ..., 91) that have the digit 1 in their digits. - Box 2: There are 20 tickets (02, 12, 20, ..., 92) that have the digit 2 in their digits. - Box 3: There are 20 tickets (03, 13, 23, ..., 93) that have the digit 3 in their digits. - Box 4: There are 20 tickets (04, 14, 24, ..., 94) that have the digit 4 in their digits. - Box 5: There are 20 tickets (05, 15, 25, ..., 95) that have the digit 5 in their digits. - Box 6: There are 20 tickets (06, 16, 26, ..., 96) that have the digit 6 in their digits. - Box 7: There are 20 tickets (07, 17, 27, ..., 97) that have the digit 7 in their digits. - Box 8: There are 20 tickets (08, 18, 28, ..., 98) that have the digit 8 in their digits. - Box 9: There are 10 tickets (09, 19, 29, ..., 99) that have the digit 9 in their digits.

From the above calculations, we can see that the minimum number of tickets that can be placed in any of the boxes is 10. This occurs when we place all the tickets that have the digit 9 in their digits in box number 9.

Therefore, the correct answer is 10.

Answer

The minimum number of tickets that can be placed in one of the boxes after arranging all the tickets according to the given rule is 10.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос