
9,1 иррациональное число?


Ответы на вопрос







9.1 is an irrational number. An irrational number is a number that cannot be expressed as a fraction or a ratio of two integers. It is a non-repeating and non-terminating decimal. Irrational numbers are represented by an infinite number of decimal places without any pattern.
The number 9.1 is an example of an irrational number because it cannot be expressed as a fraction or a ratio of two integers. It is a decimal number that goes on indefinitely without repeating or terminating.
Irrational numbers have been studied extensively in mathematics and have many interesting properties. They are used in various fields, such as geometry, calculus, and number theory.
Here are some examples of irrational numbers: - π (pi) is an irrational number that represents the ratio of a circle's circumference to its diameter. It is approximately equal to 3.14159. - √2 (square root of 2) is an irrational number that represents the length of the diagonal of a square with sides of length 1. It is approximately equal to 1.41421.
I hope this answers your question! Let me know if you have any further inquiries.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili