
1. На ёлочный базар в три палатки привезли ёлки. В первую и вторую палатки вместе привезли 200
ёлок, во вторую и третью вместе – 150 ёлок, в первую и третью вместе – 220 ёлок. В какую палатку привезли меньше всего ёлок? И сколько?1) во все поровну 2) во вторую; 58 3) в первую; 644) в третью; 60 5) во вторую; 65 6) правильного ответа нет

Ответы на вопрос

І--------------------І-----І 200
ІІІ ІІ
І-----------------І-----І 150
І ІІІ
І--------------------І----------------І 220
200+150=350(елок) - всего в І, ІІІ и двух ІІ палатках
350-220=130(ел) - в двух ІІ палатках
130:2=65(ел) - во ІІ палатке
150-65=85(ел) - в ІІІ палатке
220-85=135(ел) - в І палатке
Ответ:5) меньше всего ёлок привезли во вторую палатку



Question Analysis
The question asks which tent had the fewest number of trees and how many trees were in that tent. The options provided are: 1) An equal number of trees in all three tents. 2) The second tent with 58 trees. 3) The first tent with 64 trees. 4) The third tent with 60 trees. 5) The second tent with 65 trees. 6) There is no correct answer.To answer this question, we need to analyze the information given about the number of trees brought to each pair of tents.
Answer
To determine which tent had the fewest number of trees, we need to compare the total number of trees brought to each pair of tents. Let's analyze the information provided:- The first and second tents together had 200 trees. - The second and third tents together had 150 trees. - The first and third tents together had 220 trees.
To find the number of trees in each tent, we can set up a system of equations. Let's assume the number of trees in the first tent is x, the number of trees in the second tent is y, and the number of trees in the third tent is z.
From the given information, we can write the following equations:
1) x + y = 200 2) y + z = 150 3) x + z = 220
To solve this system of equations, we can use substitution or elimination. Let's use elimination:
Adding equations 1 and 2, we get: (x + y) + (y + z) = 200 + 150 x + 2y + z = 350
Subtracting equation 3 from this result, we get: (x + 2y + z) - (x + z) = 350 - 220 2y = 130 y = 65
Now that we have the value of y, we can substitute it back into any of the original equations to find the values of x and z. Let's substitute it into equation 1:
x + 65 = 200 x = 200 - 65 x = 135
Therefore, the first tent had 135 trees, the second tent had 65 trees, and the third tent had 220 - 135 = 85 trees.
So, the correct answer is option 5) The second tent had the fewest number of trees, with 65 trees.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili