Вопрос задан 26.09.2018 в 20:21. Предмет Математика. Спрашивает Маньков Максим.

(A\B)\C=(A\C)\(B\C) доказать или опровергнуть

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бахтерева Саша.
Опровергнем
(А/С)/(B/C)=(A/C)(C/B)=(A/C)(C/B)=A/B ≠ (A/B)/C
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Simplifying the Expression

The given expression is (A\B)\C = (A\C)\(B\C). Let's simplify this expression step by step.

To simplify the expression, we can start by expanding the left-hand side of the equation (A\B)\C.

Expanding (A\B)\C

To expand (A\B)\C, we need to first evaluate A\B and then take the result and evaluate (A\B)\C.

The operation A\B represents the set of elements that are in set A but not in set B.

Now, let's evaluate A\B:

A\B = Set of elements that are in A but not in B.

Next, let's evaluate (A\B)\C:

(A\B)\C = Set of elements that are in (A\B) but not in C.

Expanding (A\C)\(B\C)

To expand (A\C)\(B\C), we need to first evaluate A\C and B\C, and then take the results and evaluate (A\C)\(B\C).

The operation A\C represents the set of elements that are in set A but not in set C.

The operation B\C represents the set of elements that are in set B but not in set C.

Now, let's evaluate A\C and B\C:

A\C = Set of elements that are in A but not in C.

B\C = Set of elements that are in B but not in C.

Next, let's evaluate (A\C)\(B\C):

(A\C)\(B\C) = Set of elements that are in (A\C) but not in (B\C).

Comparing the Two Expressions

To prove or disprove the equation (A\B)\C = (A\C)\(B\C), we need to compare the results of the two expressions we obtained.

If the two expressions yield the same set of elements, then the equation is true. Otherwise, the equation is false.

Please note that without specific values for sets A, B, and C, we cannot provide a definitive answer. The validity of the equation depends on the specific elements in the sets.

If you provide the specific values for sets A, B, and C, we can help you further simplify and compare the expressions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос